Re'Arch 2008 Policing Freedom... to use the Internet Resource Pool

Arnaud.Jacquet, Bob.Briscoe, Toby.Moncaster {@bt.com} December 9 2008

- Architectural choices for policing usage
- Design of a bulk congestion policer
- Impact on traffic
- Implications on congestion signals

Policing usage – state of affairs

- Distributed resource control
- Many parties involved in the outcome
- Fair usage policies on broadband services

Techniques	Assumptions
volume caps	each packet has the same packet
fair queuing	single access bottleneck
deep packet inspection	application type implies congestion

 They limit flexibility to shift usage (over links and time) around the Internet resource pool, and prevent evolution towards more efficient rate adaptation

Policing usage – what to change

- What matters is usage of <u>scarce</u> resources, as reflected by congestion
- Each packet is accountable for the congestion it causes on its path
- It is possible to monitor accountability of any collection of flows
- For any accountable party, monitor and control
 - Congestion volume (rather than volume)
 - Congestion bit rate (rather than throughput)
- Granularity of resource usage accountability
 - Not per flow (can open several in parallel)
 - Per customer, where there is a contractual relationship
- Congestion pricing leads to dynamic prices ⊗
- Congestion policing is the rationing version
- To enforce such policies at the technical level, we need to consider control mechanisms (policing) and interfaces (signalling)

Architectural considerations

- Policing is located at the 'enforcement point' where a customer attaches, rather than at network resources
 - Need for suitable congestion signalling
- Only the overall traffic of each customer is policed: flow isolation would limit flexibility

- The policer operates as a congestible resource
- When congestion volume exceeds allowance, it introduces its own congestion signal π
- ... based on the congestion bit rate of the aggregate traffic

Cross-effect on responsive flow

- Flow i experiences congestion p_i
- Other flows through same policer experience congestion forcing the policer to be active
- The bulk policer acts as a congestible resource with apparent congestion level π
- The figure shows how the congestion response of the flow changes from unpoliced to policed

Cross-effect on unresponsive flow

- The effect is similar with unresponsive flows
- Even an unresponsive application might be throttled on the basis of the congestion caused by other flows from the same customer
- However, responsive traffic remains more affected

Promoting self-policing

- The bulk policer imposes a joint constraint on all the traffic of a customer
- This can have disproportionate impact on some of the most valuable flows
- Thus encouraging customers to actively control the apportionment of their bit rate allowance:
 - → weighted congestion control
 - → protect foreground traffic
 - → shift background to less congested time-space

Requirement on signalling

- Each <u>packet</u> needs to signal what congestion is expected on its path
- This means each resource needs to signal congestion back to the source

→ ECN

 One way for the source to decide what to signal is to reinsert the congestion signal

➔ re-feedback

 Policing upload traffic (rather than download) requires end-of-path information validation but provides stronger protection against identity spoofing

Conclusions

- Make each packet accountable
- Control congestion volume rather than volume
- Don't assume link between application type and congestion
- Enforce per customer, at contractual connectivity point
- Expose downstream congestion
- Bulk constraint forces the evolution of end-customer rate adaptation and encourages better use of shared resource pool

Re'Arch 2008 Policing Freedom... to use the Internet Resource Pool

Arnaud.Jacquet, Bob.Briscoe, Toby.Moncaster {@bt.com} December 9 2008

Direct effect on a single flow (illustration purposes)

 Each flow has its natural congestion response, based on the application used

→ eg. y_{TCP}

- The policer puts a constraint forcing the operational point of the application's throughput to remain out of the shaded area
- When congestion exceeds p., the policer takes over the congestion response

Direct effect on a single flow (illustration purposes)

This also applies for unresponive flows