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1 Introduction

{TBA}

2 Background and Require-
ments

{I will re-write this whole section, so don’t bother
reading it}

IP multicast deliberately designed on an open
model where anyone can send to a multicast ad-
dress and anyone can join to receive. Reception
{. . . ?}

Authentication of a communication is usually
achieved, at least initially, by some form of digi-
tal signing of the message. Where the parties have
no previous relationship, asymmetric key cryptog-
raphy is the most convenient way to authenticate
messages. The signer, Alice, typically encrypts a di-
gest of the message with her private key and sends
this digital signature with the message. This is con-
venient because anyone can access a certified direc-
tory of public keys to check that the signature de-
crypts with the sender’s public key back to a hash
of the message. However, asymmetric key cryptog-
raphy (e.g. RSA) is deliberately a computation-
ally expensive operation — a dedicated 300MHz

Pentium processor can typically only achieve un-
der 80 signings or 2000 verifications per second
for typical packet sizes [33]. This is before any
time has been allocated for the most processor-
hungry task of most streaming applications — ser-
vicing software codecs. Worse, often applications
involve at least duplex streams, while layered cod-
ings or multi-media applications potentially intro-
duce many more streams. And worse still, many
mobile devices have considerably lower powered
processors than this. Also note that Moore’s Law
does not save us here, because, as processors get
faster, asymmetric key lengths will be increased to
maintain equivalent strength. So where a stream
of messages have to be authenticated (e.g. audio
or video packets), faster message authentication is
typically used.

{Not sure this next bit is the best order to introduce
this by starting straight into technique rather than
principle. . . }

A session key is randomly generated by the signer
and passed to the intended recipient under the pro-
tection of her public key. Each message is then
passed through a hash function initialised with this
session key to create what is commonly termed a
message authentication code (MAC). Each message
is sent with its MAC to prove the sender’s authen-
ticity. This still leaves open the possibility of some
eavesdropper, Eve, copying the message in transit
and using the copy elsewhere inappropriately. Such
a replay attack can be foiled by a time-stamp being
added to the message before generating the MAC
(a technique just as necessary when using public
key cryptography).

{Distinguish non-repudiation of origin and of re-
ceipt and authentication of id of sender to receiver
and to others}

The above MAC-based solution only works for one-
to-one communication. It relies on the recipient,
Bob, sharing a secret session key with the sender,
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Alice. Bob knows he didn’t authenticate the mes-
sage, so if he knows he also hasn’t passed on the key,
the only other person who could have must have
been Alice. As far as Bob is concerned, if Alice is
careless enough to pass the key on to someone else,
she has to accept the consequences of what that
third party might authenticate in her name. No-
one considers MACs as proof to a third party, so
Bob cannot fool anyone else that Alice sent a mes-
sage she didn’t. If Bob creates his own message,
authenticates it with the session key and presents
it to Alice, Alice knows she didn’t authenticate it,
so Bob can only fool himself.

If Alice tried to use a MAC to send an authen-
ticated message to a group of people, she would
have to reveal the secret session key to them all so
that they could verify she sent it. But then any
one of the recipients, say Carol, could fool any one
of the others, say Bob, by sending messages with
MACs based on Alice’s session key. The MAC ap-
proach is only sufficient if the recipients are only
concerned about ensuring anyone within the group
is the sender.

When authenticating IP multicast streamed media
such as audio or video, if a scheme doesn’t toler-
ate a degree of packet loss it is effectively useless,
as reliable repair of every packet to every receiver
is very expensive and anyway deliberately unneces-
sary for real-time media codings. Although studies
that have characterised losses on the experimental
multicast backbone (MBone) don’t claim to nec-
essarily be typical, the traces used are not atypi-
cal either (e.g. the May 1996 NASA shuttle video
multicast [15]). In this study, only some 15% of
receivers experienced zero or very low losses with
about 40% losing more than 20% of packets.

LSMA taxonomy of requirements [2]
EXPRESS [19]
Ballardie [3]
KHIP [31]
Canetti [8]
Wong/Lam [33]
Gennaro/Rohatgi [12] {Genaro buffers to authenti-
cate before sending, whereas FLAMeS passes across
the data as soon as it is ready, and the authentica-
tion arrives later.}
Anderson et al (Guy Fawkes protocol) [1]
Perrig [26]

Thus, to summarise, the state of the art offers no
sender authentication technique for group commu-
nications with an overhead even approaching the
equivalent of those used for two-party communica-
tions.

3 FLAMeS scheme

Below we introduce our stream authentication
scheme, FLAMeS. We start with a brief descrip-
tion of the initialisation required. However, some
of the detail of the initialisation gets in the way of
the explanation so it is deferred — to keep the sus-
pense to a minimum! Variants are described, each
of which trades off a different requirement against
the others, but full discussion of the applicability
of each variant is also deferred until after they are
all introduced.

The scheme can be used to authenticate message
streams at any appropriate level, e.g. link frames,
network packets or application data units. There-
fore, we will use the neutral term ‘message’ for each
unit of data that is to be authenticated. We model
a stream as a sequence of messages from a single
source:

• Mi is the ith message in the sequence, with i
ascending with time.

• Message, Mi, consists of at least a data pay-
load, Di and a sender time-stamp, CS,i.

3.1 Set-up

Before sending the first message, the sender must
randomly generate H initial keys (H is one, two
or more depending on the variant). As a concrete
example, these keys should be 128b wide. From
each of these the sender then creates a sequence of
keys, each of which is blinded from the last (often
termed a hash chain). Two such chains are shown
in Fig 1a). The duration of the stream must be di-
vided into time-slots with enough keys for one to be
assigned to each. How to determine the time-slot
duration will be discussed later. Note that none of
the data for the messages needs to be known for the
sequence of keys to be created, only how many keys
are needed (the product of the expected session du-
ration with the key frequency). However, if the ses-
sion is open-ended, any practical chain length can
be chosen, as chains can be chained together with
a little more complexity. We discuss the practicali-
ties of chain generation later, suffice to say that two
key chains for an hour of audio consisting of 20ms
packets with one packet per key time-slot can typ-
ically be generated in under a second on today’s
average PCs. We now define notation needed for
set-up:

• Kh,j is the jth key from the end of the hth
key sequence, with j decrementing with each
blinding.
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• h is the index of each sequence of keys. For
instance, if there are two key sequences (H =
2), h takes values 0 or 1.

• J is the index of the first key in each sequence,
thus the initial randomly generated key in each
sequence is Kh,J . The last key is arranged to
be Kh,0 making J + 1 keys in each sequence.

• Each step of the chain is computed from the
mapping Kh,j = b(Kh,(j+1)) where the func-
tion, b(·), is a well-known blinding function
such as the MD5 hash [28] or the NIST secure
hash [25]. That is, a computationally limited
adversary cannot find a key from its blinded
value or any further blinded values down the
chain. Further, because the result of one blind-
ing is used for the next, Kh,j = bJ−j(Kh,J).
That is, the jth key is found by running the
blinding function recursively J − j times start-
ing with the initial key.

Keys don’t necessarily map to messages on a one
to one basis, which is why we use i for the message
index and j for the key index.

The keys at the ends of each chain, Kh,0, are signed,
typically using the private key of the sender and
sent to all receivers. For example, taking the sce-
nario of an Internet real-time packet stream, a typ-
ical way to achieve this would be by including the
end keys in the session description using the session
description protocol (SDP) [17] (see later for de-
tailed example). Session descriptions can either be
announced using the session announcement proto-
col as a transport (SAP) [18, 16] or targeted at indi-
viduals by explicitly inviting them into the session
with the session initiation protocol (SIP) [14]. Both
these transports include the facility for authentica-
tion of the session description. A representation
of such a signed session description is shown in Fig
1b), where A0 is the digest of the session description
including all the end keys, kh,0 and where s(A0) is
the signature of this digest using the sender’s pri-
vate key, K−s.

In all the figures in this paper, each thick black
arrow represents a one-way dependency of one value
on another; thus y → x and z → x mean x depends
on both y and z, neither of which can reasonably
be deduced from x.

3.2 S/KEY

As our scheme builds on the seminal work of Lam-
port [23], later termed the S/KEY authentication
scheme [13], we will first describe a simple scheme

based purely on S/KEY, then explain its weak-
nesses in a group scenario. {check S/KEY is ex-
actly like this}

For this scheme, only one key chain is required so
h = 0 only. Also, unlike our own scheme, we don’t
require a time-stamp with the data in each message,
but instead a simple sequence no., i, (Fig 2). In
S/KEY, there is a one to one mapping between keys
and messages, i.e. i = j. As the sender generates
each message in the stream, Mi, it accompanies
it with the corresponding key, K0,j . Because the
key chain has been indexed in descending order but
j increases as the stream progresses, the key used
for each successive message works towards the start
of the key chain. Fig 2 shows message, Mi, and
the following message, Mi+1, accompanied by their
respective keys working back up the key-chain.

Let us first consider the situation on receiving mes-
sage, Mi, in Fig 2, accompanied by key, K0,j . If the
highest index of any message previously received
in the stream is (i − d), the receiver repeatedly
hashes the key just received d times, thus calcu-
lating bd(K0,j). d will usually be 1, but might
be greater if there have been losses. The receiver
checks that the result matches the key K0,(j−d)

that arrived with the most highly indexed previ-
ous message. Fig 2 also shows the situation after
the arrival of the next key, K0,(j+1), with d = 1
(no loss). Note that this design achieves inherent
loss-tolerance, as the validity of any newly revealed
key in the chain can be validated across any gap in
the message stream as long as at least one previous
message in the stream has been received. Concep-
tually, the first message in the stream is that given
earlier — in the session description. This is why we
recommend the session description is delivered by
reliable transport, either through regular repetition
(SAP) or over TCP (SIP).

We show next that S/KEY alone has security weak-
nesses for group communications, however, if the
attacks described below are unlikely, it can be used
with the following precautions to offer a degree
of authentication. Messages arriving at a receiver
with the same index but different data are a sign
of an attempt to spoof the stream. Therefore, any
message with a sequence number equal to a pre-
vious message (d = 0) is discarded, keeping only
the first to arrive. It may also be desired to flag
an alarm if a duplicate index is received (possibly
triggering adaptation to our stricter scheme below).
Any out of order messages with sequence numbers
less than the previous latest message (d < 0) can-
not be assumed to be authentic but may be used
if the lack of authenticity of that particular mes-
sage is unimportant to the application. Misordered
messages that don’t even have a key that fits into
the key chain should definitely be discarded.
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FLAMeShash chains of keys

K0,j+1 K0,jK0,J ...

Kh,j+1 Kh,jKh,J ...

K0,0...

Kh,0...

b(·) b(·) b(·)

b(·) b(·) b(·)a) ... ...

b) K-S A0 K0,0Kh,0session descr. s(A0)...

Figure 1: Hash chains of keys and authenticated initialisation information

immediate but network-
dependent authentication

time

MiK0,j Mi+1K0,j+1 ...

Dii

Mi-dK0,j-d

...

d iterations

Figure 2: Immediate but network-dependent authentication

Unfortunately, as already noted, the security of
S/KEY is reasonable, but not assured, without our
further measures. Feasible ways for an attacker to
spoof a message authenticated with S/KEY alone
are:

• to receive the message, learn the next key back-
wards in the chain that is revealed with that
message, then use that key to accompany a
spoof replacement message and send these out
in an attempt to overtake the first message
(possibly by requesting differentiated latency
from the network [9, 6] or by using a parallel
network);

• to produce a spoof message as above, but send
it out only to receivers where it is known that
the original message was lost or delayed before
it reached them (e.g. in response to a reliable
multicast local repair request [11] or by taking
advantage of misordered arrival of messages as
already described);

• to conspire with a network provider to delay or
remove the original message from part or all of
the multicast tree and replace it with a spoof
message created as above.

Thus S/KEY gives ‘network-dependent’ authenti-
cation — we use the term to refer to the set of is-
sues above, being a more relevant term than ‘man-
in-the-middle’ for the group communications con-
text. All these attacks are remotely possible but

nonetheless relatively hard to mount. Later we
will discuss exactly how difficult these attacks really
are, showing that this basic scheme is surprisingly
strong against attackers without control of the net-
work, given its simplicity and efficiency. Our sub-
sequent scheme closes all these holes at the expense
of marginally less simplicity and efficiency, but still
a good deal better than the state of the art.

3.3 Immediate then certain authen-
tication

Just like S/KEY, the FLAMeS scheme uses succes-
sively earlier keys back along a hash chain. For the
first variant of this scheme, only one key chain is
required so again h = 0 only. However, unlike be-
fore, as the sender generates each message in the
stream, Mi, it uses the corresponding key, K0,j ,
to initialise a message authentication code (MAC),
typically using a keyed hash [32].

• Ah,i = a(Mi,Kh,j) is the message authenti-
cation code of Mi with respect to Kh,j , us-
ing a well-known MAC function a(·), such as
HMAC [4, 21].

The sender sends each message in the stream ac-
companied by its MAC. However after using a key
to create a MAC, the sender waits at least time Th,G

before revealing the key. Thus the MAC accompa-
nying each message is a commitment to a key in the
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chain, which can only be verified later when the key
is revealed. As long as any message arrives before
a deadline, which we show how to calculate later,
each receiver can be certain that the key used to au-
thenticate that message cannot have even entered
the network, and therefore must still be secret. All
the sender has to do is guarantee to withhold the
key for the declared period, Th,g.

We discuss the compromises around setting the
value of Th,G later, but if it is set large enough,
there is scope for more efficient use of the key chain.
Specifically, because exposure of the key is delayed,
the same key may be reused to create MACs for
multiple messages, as long as its exposure is de-
ferred until Th,G after its last use. All that is
necessary is to use the simple, succinct technique
given later to declare regular time-slots of duration
Th,K , within which a key may be re-used. At the
other extreme, if the message frequency is variable,
it is possible that some time-slots will not contain a
message at all. However, as each time-slot passes,
the key must still be systematically progressed back
along the chain, to keep the correct keys in the cor-
rect time-slots.

Fig 3 shows how the key, K0,n, that was first used to
create the MAC, A0,i, for message, Mi, is revealed
more than T0,K + T0,G later than the message it
relates to. Just as K0,n is revealed with a later
message, earlier key, K0,j , is revealed when mes-
sage Mi is sent, allowing an earlier message (not
shown) to be verified. Also, the first time K0,j is
revealed, it gives the same immediate but weaker
authentication of Mi that S/KEY alone would give.
Thus, although full authentication is delayed, im-
mediate but slightly weaker authentication is also
achieved.

In the example shown, the same key, K0,n, is reused
to generate MACs, A0,i and A0,(i+1), because their
respective messages, Mi and M(i+1), are in the
same time-slot, of duration T0,K . As well as the
same key being used throughout a time-slot, the
keys revealed with every message in the same time-
slot are all equal to each other. To save commu-
nication overhead, each key need not be revealed
repeatedly within a time-slot, but doing so is the
simplest way to be resilient to losses. Repeated ex-
posures of the same key clearly loses the benefit
of immediate S/KEY-like authentication after the
first time. Thus, if immediate authentication is im-
portant, it is recommended that Th,K is set so that
there is just one message per key time-slot. This
ensures immediate, authentication of all messages,
notwithstanding the fact it is weaker than the later
full authentication.

We now describe how the sender works out the
time-slots of the keys used and revealed in any mes-

sage. Despite exposure of the key being delayed,
there is no need to declare which key is in which
message. This is defined implicitly by the time-
stamp hint, CS,i, in each message. For each mes-
sage, the sender is committed to using the key with
the index that is the number of whole key change
intervals since the first key was used. The sender
is similarly tied down as to which key to reveal in
each message, by having to adhere to the ‘guar-
anteed silence’ period. Therefore, on reading CS,i,
any receiver can repeat the same calculations as
the sender to find which key was used and which
key has been revealed. Thus, as long as the sender
declares the relevant constants to all receivers in
the session description, they can both work out the
full schedule of when any key should be used or
revealed. Formally, the sender will use Kh,n to au-
thenticate message Mi, containing time-stamp CS,i,
where:

n = Lh + b(CS,i − CS,h,L)/Th,Kc. (1)

In the same message, Mi, the sender will reveal an
earlier key, Kj , where

j = Lh + b(CS,i − CS,h,L − Th,G)/Th,Kc. (2)

Where:

• CS,h,L was the sender clock reading when the
first time-slot started;

• Lh was the key index of the first key to be used,
Kh,L, in each chain. Typically Lh = 1 for all h
(Fig 1), but allowing other values is necessary
later (to cater for late join).

We now describe in outline the receiver’s strategy
for verifying each message, Mi:

1. Work out the time-slot of the key, K0,n, used
for the MAC in the newly arrived message (us-
ing its sender time-stamp, CS,i and equation
(1);

2. Check the new message has arrived before the
deadline when the sender may have revealed
the key used for its MAC (the simple method
is described later);

3. Work out the time-slot of the key, K0,j , re-
vealed in the newly arrived message (using its
sender time-stamp, CS,i and equation (2));

4. Work out the difference, d, between the time-
slot index of this newly revealed key and the
previous latest time-slot of a revealed key;

5. Validate the newly revealed key by repeatedly
hashing the previous latest key d times, as with
the S/KEY scheme above, immediately giving
probable, but not certain, authentication;
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FLAMeSFLA1: immediate then certain
authentication

time

Mi+2A0,i+2 K0,j+1 ...Mi+1A0,i+1 K0,j

PiCS,i

MmA0,m K0,nK0,j MiA0,i

CS,i CS,i+T0,K+T0,GCS,i+T0,K

Figure 3: Immediate then certain authentication

6. Given the newly revealed key and having
worked out the time-slots of the keys used in
each earlier message (in previous runs of step
1) identify the message(s) that can now be val-
idated, say Mg;

7. then use K0,j to validate the earlier MAC,
A0,g. That is, a(Mg,K0,n) = A0,g.

Because the sender has to commit to the MAC
when the message is sent, this scheme is proof
against a man-in-the-middle attack (by Mallory,
say). Mallory cannot commit to a new MAC for
a spoof message before a valid key has even entered
the network. He has to delay the message until
the valid key is revealed so that he can produce a
valid MAC. A message that arrives at the receiver
at a time when it is possible that the ‘guaranteed si-
lence’ timer, Th,G, has expired at the sender cannot
be deemed authentic by that receiver. This is be-
cause the associated key cannot be guaranteed not
to have entered the network. With this discipline
in place, which is fully described later, Mallory has
no scope for his attack. This is, in effect, a one-way
version of the Interlock Protocol [27], using expiry
of implicit timers instead of explicit replies in order
to interlock commitments and their associated keys.
Although the authentication given by FLAMeS is
delayed, once it arrives it is as strong as the signa-
ture used to sign the initial session description with
some minor caveats that we discuss later.

3.4 Wide variations in receiver delay

In large-scale multicast environments, it is quite
possible for delivery delay to be very low for some
receivers but awful for others. Rather than have to
set Th,G to satisfy the lowest common denominator
receiver, we now describe a way to allow ‘closer’ re-
ceivers to be certain of the source identity even if
the same message doesn’t arrive at more ‘remote’
receivers until after they know the sender might
have revealed the key. This presupposes that the

application needs authentication as quickly as pos-
sible, but still works the longer it is delayed. All
that is necessary is for the sender to include two
(or more) MACs with each message, and to reveal
the key for each after progressively longer ‘guaran-
teed silence’ delays, Th,G.

This is why we showed the general case in Fig 1,
where there are H key chains, with h taking all
possible values from 0 to H − 1. For each value of
h, the sender must declare the timing parameters
CS,h,L, Lh, Th,K , Th,G, although often the first two
or even three might be the same for all h.

Fig 4 shows a typical example where H=2 (two
MACs and two keys per message). For message,
Mi, the key, K0,n, that created the first MAC, A0,i,
is revealed soonest, while the other key, K1,n, that
created the other MAC, A1,i, appears later. That
is, T1,G is set longer than T0,G. As soon as Mi

appears at any receiver, the keys with it can be
tested to check they hash to previously revealed
keys. This immediately increases the probability
that Mi is authentic. However, it may arrive at
a ‘close’ receiver before the deadline when the re-
ceiver can be sure K0,n hasn’t entered the network,
but arrive at a more distant receiver after this dead-
line. As long as it arrives at the ‘further’ receiver
before the deadline when it becomes possible that
K1,n has entered the network, the further receiver
will immediately know it is still worth waiting for
the second key to arrive. When K0,n arrives at
each receiver only the ‘closer’ one can be certain of
the authenticity of Mi, while the ‘further’ receiver
only experiences increased probability of certainty.
When K1,n arrives, certain authenticity is assured
for the ‘further’ receiver. The ‘closer’ receiver can
ignore the second MAC and its later key.

Earlier, we discussed how only one key should be
used per time-slot to avoid losing the immediate
S/KEY-like authenticity test when the same key is
revealed multiple times. When there is more than
one key chain, this restriction need only apply to
one of the chains. The longer ‘key silence’ delays
might as well be accompanied by longer key change
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intervals to minimise the cost of high key change
frequency. Fig 4 shows such a scenario, where K0

changes every message, while K1 changes every two
messages.

If desired, it would be perfectly possible to use
more than two MACs per message, with the key
for each being progressively delayed. This would
neatly cater for extreme heterogeneity of delivery
latency either in space across a multicast tree or
in time during a session. Messages that arrived
with low latency could be authenticated by an early
key exposure and those arriving with poorer latency
could still be authenticated with certainty by a later
key exposure. All receivers would continue to be
able to take advantage of the immediate but weaker
authentication afforded by the keys accompanying
the messages, as already described.

3.5 Low frequency message streams

This is a variant of FLAMeS that merely caters
for scenarios where messages are relatively infre-
quent compared to the ‘guaranteed silence’ timer.
That is, for a significant proportion of messages,
(CS,i+1 − CS,i) � (Th,K + Th,G). In such cases, it
makes sense to reveal the delayed key on its own,
rather than waiting to attach it to the next mes-
sage.

Fig 5 shows that, rather than K0,n appearing in a
later message, it appears on its own as soon as the
timer has expired that allows the sender to reveal it.
In order for the receiver to know which key is which,
the lone key is accompanied by a time-stamp hint
which allows the key’s index to be calculated from
equation (2) above. If the scenario ensured that
there was always one message per key at a regular
frequency, a simpler alternative would be to refrain
from sending any hint altogether, or to include just
the key index itself, n, as the hint.

Revealing keys on their own in this way is also
necessary to ‘play out’ the end of a session under
the regular FLAMeS scheme. That is, once the data
session has ended, it is still necessary to transmit
the outstanding keys for a further time Th,G after
the last message that contains a real payload.

4 Set-up issues

We now return to the details of the set-up phase as
promised earlier.

4.1 Implicitly authenticated time-
stamps

In FLAMeS, authentication of each message de-
pends on the time at which the message was sent.
However, it would be no good writing a time-stamp
into the message then relying on authenticating the
combination of time-stamp and message. An at-
tacker could just re-write the time-stamp, exploit-
ing the circular dependency of the time-stamp’s
own authentication on itself. Instead each key in
the hash chain is assigned to a time-slot in ad-
vance. Thus, when one of the keys is used to pro-
duce the MAC of a message, it implicitly defines
the time-slot in which the message was sent. To set
up this arrangement (illustrated later in Fig 7) re-
quires three extra steps:

The first step simply involves declaring a set of four
time-related parameters in some session description
(in fact, a set for each key chain index, h, in use).
As specified in the key-chain set-up above, the ses-
sion description is still signed with the sender’s pri-
vate key, ensuring that these four parameters are
also fully authenticated (Fig 6):

• Lh, the index of the key to next be used, Kh,L.
The aim is to synchronise around the time that
it is planned to first use this key;

– Prior to the session starting, L would al-
ways be 1 making its declaration redun-
dant. This parameter only becomes use-
ful for optimising late-join efficiency (see
later);

• CS,h,L, the clock reading at the sender when it
is planned to first use key, Kh,L;

– Again, the situation is considerably sim-
pler if late-join is not to be catered for.
CS,h,1 would be the same for all h be-
cause all key chains would start at the
same time. Typically the session start
time might have already have been de-
fined elsewhere making this parameter
redundant. For example, if SDP were
used to describe the session, it includes
its own session start time field, ‘t =
<start time>’;

• Th,K , the key change interval the sender in-
tends to use;

• Th,G, the ‘guaranteed silence’ period — the
time interval after last use of a key during
which the sender guarantees it will not reveal
the key. It is chosen by the sender to ensure
there is a high probability that the last message
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FLAMeSFLA1: immediate then certain
then slower certain authentication

time

A1,iK0,j K1,jA0,i K0,nMi+2A1,i+2 K1,j+1A0,i+2 K0,j+2
...

CS,i CS,i +T0,K+T0,GCS,i+T1.K

Mi

CS,i +T1,K+T1,G

K1,n
......

Figure 4: Immediate then certain then slower certain authentication

message stream authentication

time

CS,i CS,i+1

...

CS,i +T0,K+T0,G

Mi+1A0,i+1 K0,n+1MiA0,i K0,n CS,n CS,n+1

CS,i+1 +T0,K+T0,G

Figure 5: Low frequency message stream authentication

containing that key will have cleared the net-
work for all receivers (potentially also allowing
time for repair of losses). One could also think
of Th,G as the ‘assume-delivered’ timer. Below,
a simple technique is described for receivers to
calculate with certainty the most pessimistic
reading of their own clock at which this timer
could have expired at the sender. However,
clearly some messages might be delayed past
the expiry of this timer or lost. The FLAMeS
protocol simply states that the authenticity of
such messages is suspect. This details of set-
ting and measuring this timer are discussed in
more detail later.

Note that, for clarity throughout this paper, we use
CS or CR to represent clock readings at the sender
or receiver respectively and T or t to represent time
intervals between clock readings.

The second extra set-up step enables each receiver
to be certain of the upper bound, tD, on how much
later the sender’s clock could conceivably be read-
ing than her own. The simple, common practice for
establishing tD is given in Appendix A. Essentially,
the sender declares its clock reading and maximum
clock drift rate in its authenticated reply to a single
‘echo request’ from each receiver (the terms sender
and receiver are used in the sense of their even-
tual roles, not their temporary roles during this
duplex message exchange). Note that we do not
synchronise clocks, as neither party knows whether

the other is more correct. We merely calculate the
adjustment to add to the receiver’s clock whenever
it is needed. In fact, the pessimistic adjustment
grows over time, so synchronising clocks just once
would not be as accurate as calculating tD on ev-
ery occasion that it is needed. Later we discuss the
implications of having to measure clock skew, as
it is the only aspect of FLAMeS which requires a
message in the ‘receiver’ to ‘sender’ direction.

The third addition is to ensure a time-stamp, CS,i,
is included in each message (Fig 3). This gives
receivers a hint as to which key to use in order
to verify a message, rather than having to blindly
fish around for the correct one. A typical protocol
that meets this criterion is the Internet real-time
protocol (RTP) which is used for all sorts of real-
time streamed media, such as audio or video [29].
The RTP header includes both a sequence number
and a time-stamp. Note that authentication neither
relies on the value of the sequence number in our
use of S/KEY nor on the time-stamp in FLAMeS;
both are merely hints. The true sequence number
or time-stamp is the implicit one determined by the
key used to authenticate the message.

Until now, we have loosely implied that the time-
stamp hint in each message, CS,i, is the time with
respect to the sender’s clock at the instant the mes-
sage was sent. However, we have to take account of
the practical issues of implementing an authentica-
tion ‘layer’ or ‘module’ in a communications stack.
In fact, this time-stamp has to be calculated and
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timing declarations

CS,h,L Th,K Th,GLh

K0,0Kh,0session descr. s(A0)...K-S timingh timing0 A0

Figure 6: Timing declarations

included in the message payload even before the
MAC is calculated. For instance, if the time-stamp
is one already provided by the RTP protocol, it will
certainly have been placed in the message during
processing at a higher layer in the stack. Thus, the
sender’s authentication module doesn’t refer to the
system clock at all. All its logic is with respect to
the time-stamps in the messages that are passed to
it to authenticate. Thus, more precisely, the time-
stamp hint in each message is taken as a given,
rather than defined as the time of some generically
significant event.

Fig 7 is a timing diagram with five related streams
of events in the time dimension. The top three
event streams are in the sender’s scope and all use
time relative to the sender’s time-stamp in each
message. In the receiver’s scope covering the bot-
tom half of the diagram, message reception in the
upper event stream also considers time to be rel-
ative to the sender’s time-stamp in each message.
Only the bottom event stream uses time directly
read from a system clock (the receiver’s). For clar-
ity, we use just one key chain with index, h = 0.
To ensure a general discussion, we have chosen key
change intervals, T0,K , that are not integral multi-
ples of the message data intervals. This might not
be necessary in practice.

In Fig 7 we draw our messages in the ‘sender (data)’
stream with the start of each data unit ‘box’ coin-
cident with its time-stamp. The sender describes
the timings of the whole future session relative to
CS,0,1. Having set T0,K and T0,G, the sender’s au-
thentication module has effectively constructed the
time-slot plans for key use and key exposure over
the entire session. These are shown in the event
streams labelled ‘sender (use)’ and ‘sender (reveal)’
respectively. As messages are passed to the authen-
tication module, it merely has to determine which
key-use slot and which key-exposure slot the time-
stamp falls in, then use or reveal the appropriate
keys. For instance, for message M17, it must use
K1,5 to produce the MAC and reveal K1,2 with the
message.

Similarly, each receiver can construct the same

time-slot plan as the sender using the timing pa-
rameters in the session description. Then as mes-
sages arrive, each time-stamp hint enables the re-
ceiver to know which keys would have been used
and revealed in which messages. Note that so far
there is no direct reference to any system clock - the
time-slot plan is created regardless of when mes-
sages arrive, or even whether they arrive in order.
Thus, for instance, when M7 arrives, the receiver
can easily establish from the enclosed time-stamp
hint that it used K0,2 to create the MAC.

However, the receiver’s authentication module
must also construct a pessimistic plan of when to
first reject each key used to create each MAC. For
this she does use her system clock — in fact a worst-
case increment on her clock based on a single clock
comparison with the sender described later. For in-
stance, at the arrival of M7 (the end of the dotted
arrow) she checks that her clock reading isn’t after
the deadline at which she should no longer trust
messages that use K0,2. In the case of M10, she
would quickly calculate that it used K0,3, but then
she would notice that it had arrived after her dead-
line for K0,3. The authenticity of M10 would then
be suspect.

It is recommended that the receiver authentication
module should pass data to the application imme-
diately, whether authenticated or not. In parallel it
should advise the application on any new authentic-
ity knowledge, whether for the current message or
previous ones. As each message can be weakly au-
thenticated immediately, then authenticated with
certainty later, this arrangement allows the appli-
cation to decide what action to take as a result
of failure to authenticate any one message. This
follows the principle of application layer framing
(ALF) [10].

If a message is lost (e.g. M13 in the figure), au-
thenticity verification is completely loss-tolerant, as
already described.
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implicitly authenticated timestamps

sender (use)
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M  1    2    3    4    5    6    7    8    9   10  11  12  13  14  15  16  17

K0,1 K0,2 K0,3 K0,4
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sender (data)

time

K0,1 K0,2
sender (reveal)
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T0,K T0,G T0,K

Figure 7: Implicitly authenticated time-stamps

4.2 ‘Guaranteed silence’ delay

The FLAMeS protocol relies on the sender not in-
serting a key, Kh,n, into the network until a mes-
sage where the time-stamp is least the ‘guaranteed
silence’ time, Th,G, after the time-stamp of the last
message to contain a MAC that used the key. Ear-
lier we promised to discuss the issues relating to
the setting of Th,G. To set this timer, we have to
be clear about the exact definitions of the events
at the start and end of its duration and how these
are measured by senders and receivers. Only then
can we know what typical delays to include in our
allowance for this timer.

The definition of the start of the guaranteed silence
period from the sender’s perspective depends on the
definition of the time-stamp used in the particular
scenario being designed for. For instance, if we use
an RTP time-stamp, the RTP RFC defines it as:
“. . . the sampling instant of the first octet in the
RTP data packet. The sampling instant must be
derived from a clock that increments monotonically
and linearly in time. . . ” [29]. From the sender’s
point of view, the end of the guaranteed silence pe-
riod is also defined relative to the time-stamp in
a later message. One might argue that the sub-
sequent exposure of the associated key would also
be subject to similar delays in the sender’s stack.
This line of argument might continue by asserting
that, as long as all times were measured relative
to the same type of event, delays would all can-
cel out, thus removing the need for any special al-
lowance when revealing the MAC. However, when
setting Th,G, we have to take the pessimistic view
that the message using a key might be subject to
worst-case stack delays, while the later message re-
vealing the key might happen to leave the sender
with best-case stack delays. Thus, the difference
between worst-case and best-case times required to
buffer the whole message before passing it down the

stack for authentication, let alone buffering before
MAC calculation, cannot be ignored when we are
deciding the value of Th,G. In particular, if mes-
sages might be of different lengths, the maximum
length message must be assumed when using a key,
and the minimum length when revealing it later.

From the receiver’s point of view, any definition of
the FLAMeS protocol for a specific type of message
will require a strict definition of the time that the
message ‘arrives’. Otherwise, for instance, some im-
plementations might take this time as that of the
arrival of the first octet while others might take
it as the time when the whole message is buffered
ready for MAC verification. We therefore recom-
mend that the arrival time should be defined as
that when the first sign of the message is presented
to the receiver’s authentication module. One might
worry that, at the time when the start of the mes-
sage appears for authentication, the end of the mes-
sage might still be in transit on the network, and
therefore still theoretically subject to spoofing at-
tacks. This might be of concern if FLAMeS were
being used for authentication at the application
layer, where messages might be fragmented before
sending over a network. However, it would not be
of concern for packet authentication at the network
layer in a store-and-forward network.

We have now established the list of events to include
in the allowance for the ‘guaranteed silence’ timer.
Assuming RTP time-stamps, the list starts with
the sender application buffering the message before
passing it down for authentication. The list ends
at the receiver with the layer below authentication
completing message buffering before passing it up
for authentication. In between are all the other
sources of delay in both stacks, as well as, of course,
all the network delays.

However, this is only completes one side of the
equation. We also have to consider which delays
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are included in the message that establishes clock
skew (Appendix A). This is very simple. Because
we are taking a pessimistic view, we assume the
echo request message from data receiver to data
sender might have had zero delay — in the absence
of any other way of knowing how much stack and
network delay there is in between. Thus, to min-
imise pessimism, it is recommended that the clock
reading the sender declares in the reply is taken as
soon as the echo request arrives, however long its
reply takes to prepare for sending.

To summarise so far, the implication of this more
exact discussion is that the ‘guaranteed silence’ de-
lay will need to be set more pessimistically (longer)
than might at first have been thought. We have also
justified describing a message with a single sending
or receiving time, when in reality the start and end
of any message are separated in time. We allowed
this by extending the ‘guaranteed silence’ delay to
cater for the longest possible messages when using
a key but the shortest possible when revealing it
later. Thus, in Fig 7, the rest of the box after the
start is just for display, as it doesn’t actually matter
whether data is sent until the next time-stamp or
not, as long as it doesn’t overlap the next message.
Thus, although message M4 is shown starting in
the first key time-slot but ending in the second, all
that is relevant is the time-slot in which the value
of its time-stamp sits (the first).

All the above analysis is well and good, but the
sender must somehow decide on a pragmatic value
of Th,G to start a session. It can take one of two
approaches. Either it just plans to stick to its de-
cision (and receivers experiencing longer delay just
have to accept it), or the sender adapts to delay
conditions fed back, for example, in RTCP receiver
reports [29]. In the former case, it will have to
be more pessimistic about possible delay than in
the latter, as there is no opportunity to change.
In the special case where an unauthenticated ses-
sion precedes an authenticated one, the sender can
set the initial value based on receiver reports dur-
ing the earlier session. However, the above analysis
shows that delay values taken from in-session mea-
surements must still be treated with caution before
setting the guaranteed silence timer adaptively. For
instance:

• if the sender knows that all messages sent so
far have been of fairly invariant length but that
future messages might exhibit greater length
variation, it can add an adjustment to the
worst-case delay measured so far to cater for
its future plans;

• if the sender knows that receiver delay reports
are measured at different points in the stack

to those relevant for setting Th,G it can make
a reasonable allowance this fact.

If adaptation requires the timer to change, the new
value must be included in an updated session de-
scription and reported to receivers. There is no se-
curity issue if it is increased, but if it is decreased,
the sender must be sure everyone has received the
updated description before effecting the change.
This depends on the reliability mechanism of the
session description transport. If this is tightly cou-
pled (e.g. TCP) there is no issue. If a more loosely
coupled soft-state session announcement is being
used, it will be necessary to announce the change
well in advance to allow a number of repetitions
before the change is effected and to ensure earlier
session descriptions have expired in case all updates
are missed.

The initial value of the timer cannot be predicted in
general as it depends on the geographical scope of
the particular session. However, considerable mea-
surement data is available that characterises typical
end-to-end delay in many parts of the Internet [7],
which may help come to an initial decision.

4.3 Clock skew management

The single clock comparison during set-up is the
only aspect of FLAMeS that requires a message in
the ‘receiver’ to ‘sender’ direction. Unidirectional
links (e.g. satellite) would have to use the back
channel for this echo request. Although this is un-
fortunate, it is not disastrous as it need not occur
every session. In fact, one calculation of this up-
per bound can theoretically last ‘for ever’ (in prac-
tice, ‘for ever’ might mean until either party’s real-
time clock batteries go flat). However, tD repre-
sents pairwise state that each receiver needs to hold
about each sender and therefore must be cached
properly if it is to be held ‘for ever’. If it is held for
arbitrarily long times between sessions, it might, for
instance, be held as a time-expired field that is in-
dexed against each sender in a ‘cookie’ [22]. Despite
the cookie state management mechanism originally
being applied to Web sessions, it is designed to
be generalisable to protocols based on HTTP, such
as the real-time streaming protocol (RTSP) [30].
Alternatively, for sessions with many senders, as
pairwise synchronisations mount up with each new
sender in the session, it may be more efficient for
each receiver to simply hold the maximum tD for
any sender. The idea would be to merely hold this
for the duration of the session, then discard it. This
assumes the variance of all values of tD is small
compared to Th,G, which will only be the case if all
the senders are reasonably synchronised to a stan-
dard time-source.
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The FLAMeS protocol must also be arranged to en-
sure a large number of receivers do not overwhelm
the sender with an implosion of simultaneous echo
requests. Holding over clock skew state between
sessions should in itself mitigate such effects, how-
ever further measures to spread the load might be
necessary. The simplest technique is for receivers
to trigger their echo request after expiry of a timer
set to a random proportion of the interval between
learning of the impending session and its start time.

4.4 Late Join

For very long sessions, late joining receivers would
be confronted with the task of repeatedly hashing
the key in the first packet known to them, possibly
many millions of times per key chain, in order to
verify it against the key(s) right at the end of each
key-chain, Kh,0. For example, joining an audio ses-
sion an hour late might require a second’s worth
of dedicated processing to catch up on authentica-
tion. By this time another fifty packets might have
arrived. Although an extra second is unlikely to
be important when the receiver is already an hour
late, a simple optimisation is possible. The session
description can be regularly updated to include the
latest key already revealed, rather than the very
first key. Of course, it would have to be signed
each time it was sent. This applies whether partic-
ipants are invited into the session (e.g. with SIP)
or the session is repeatedly announced (e.g. with
SAP). The earlier descriptions of the time-related
parameters in the session description were deliber-
ately generalised for late join. That is, as the ses-
sion proceeds, it is possible to continually update
the index of the next key to be revealed, Lh, and
the clock-reading, CS,h,L, scheduled for its expo-
sure, rather than always having to relate back to
the very first key to be revealed in the session.

4.5 Chained chains

For very long, possibly interminable, sessions with
short key time slots, it might become impractical
for the sender to generate the very last key to be
used and hash it repeatedly right through to the
very first. Instead, the key chain can be started
from a practical intermediate point, then during
the session, as this intermediate end of the session
approaches, another intermediate point can be set
from which to start another key chain. There are
two ways to achieve this:

• the second key chain can be included with the
first in an updated, signed session description
(cf. late join above);

• the end key from the next chain can be in-
cluded in the last few messages authenticated
by the previous key chain, before switching to
using the new key chain as soon as the old
chain runs out (this would require a way to
signal when to switch).

4.6 Deployment with existing proto-
cols

As we have already said, FLAMeS authentication
can be applied at any appropriate layer; link, net-
work or application. This specification describes
the general scheme, but two further levels of spec-
ification are required before it can be used for a
particular session.

• A specific ‘profile’ specification is needed to de-
fine sizes of protocol fields such as MACs etc.
and in order to apply the scheme to a partic-
ular scenario. For instance, to define the ex-
act protocol headers when authenticating RTP
messages.

• Declaration of the fact that FLAMeS was to be
used to authenticate a particular session and of
the FLAMeS parameters to use in that session.

Below we describe a typical illustration of the
latter, showing how to declare the intention to
use FLAMeS to authenticate Internet RTP media
streams. This would also require a FLAMeS pro-
file for RTP over UDP over IP multicast, but we
don’t intend to give those details here. The proper
protocol for defining the authentication property
of a media stream should be the session descrip-
tion protocol (SDP) [17]. In fact, the RTP spec-
ification specifically expects authentication to be
achieved by adding headers to its messages be-
fore handing them down to the socket for encap-
sulation in the UDP transport protocol headers
(or stripped the headers in the reception direc-
tion). However, no specific facility to name the
media authentication scheme was included in the
SDP specification at the time it was written, nor
any way to give it parameters, other than by us-
ing the general purpose extensibility of SDP (there
was, however, a facility to specify encryption keys).
Thus, for experimental purposes, we will have to
recommend use of the <attribute>:<value> ar-
gument to the SDP attribute type (’a=<zero or
more media attribute lines>’) in each media
description section. Note that more than one me-
dia stream cannot share the same key chain. To
incorporate all the set-up parameters, we suggest
the following syntax:

12 of 19 c© British Telecommunications plc, 2000



FLAMeS

v=2 o=Butler 2890844526 2890842807 \
IN IP4 vserv.buck-pal.gov.uk

s=King’s abdication speech
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
...
a=auth-type:FLA
a=FLA-H:1
a=FLA-TK:1000
a=FLA-TG:2500
a=FLA-C:2873397496000
a=recvonly
m=audio 49170 RTP/AVP 0
a=FLA-L:2000
m=video 51372 RTP/AVP 31
a=FLA-L:1000
...

We have invented all the attribute types starting
with ‘FLA−’, the meaning of each being obvious
with respect to the notation used in this paper.
The time parameters are all in milliseconds. Note
in this case, the session start time, t, (in seconds) is
redundant, being one thousandth of FLA-C. Note
that any parameters in the session section of the de-
scription (before any ‘m =’ lines) apply to all the
following media streams. We have also had to in-
vent the ‘auth − type’ attribute. However, ideally,
the SDP RFC should be re-issued with the addi-
tion of a type to define the authentication scheme.
As type values are case-sensitive, we suggest using
‘A =’, as in the following suggested improvement
over the above example:

v=2 o=Butler 2890844526 2890842807 \
IN IP4 vserv.buck-pal.gov.uk

s=King’s abdication speech
c=IN IP4 224.2.17.12/127
t=2873397496 2873404696
...
A=FLA
A=H:1
A=TK:1000
A=TG:2500
A=C:2873397496000
a=recvonly
m=audio 49170 RTP/AVP 0
A=L:2000
m=video 51372 RTP/AVP 31
A=L:1000
...

The session description itself would be signed using
the capabilities already provided in the transport
protocols for SDP, as already described.

5 Performance and Security
Properties

5.1 Security

We shall now attempt the rather demanding task
of quantifying the strength of an authentication
scheme which starts off relatively weak but gives
strong authentication after a known delay. Firstly,
we shall concentrate on the simpler task of quan-
tifying the eventual authentication strength after
the ‘guaranteed silence’ time. We shall assume the
H=1 variant, but higher values of H (to cater for a
wider heterogeneity of receiver delay) don’t change
the eventual authentication strength for any one re-
ceiver, as long as one of the delay values chosen is
long enough for that receiver.

5.2 Eventual strength

As for any digital signature, the signature, s, of the
session description depends on the strength of the
one-way function, b(·), that creates the digest, A0,
of what is being signed, as much as on the strength
of the private key. In turn, we have arranged this
digest to be dependent on each successive key in
the key chain. The only difference is that the di-
gest depends on each key in the chain through suc-
cessive iterations of the one-way function, rather
than just one. Thus, assuming iterative operation
of b(·) makes it no less easy to reverse than a single
operation, s signs each key, K0,j , with equivalent
strength to a direct signature:

s = s(K−s, A0)

= s
(
K−s, b(<sess.descr.>, <timing>0,K0,0)

)
= s

(
K−s, b(<sess.descr.>, <timing>0, b

j(K0,j))
)

Each message authentication code, A0,i, also de-
pends on each same key, K0,j , through another one-
way function, a(·):

A0,i = a(Mi,K0,j)

Thus, the MAC of each message commits to a value
known only to the sender that, when revealed later,
can be verified as signed by the sender. We as-
sume any receiver can be certain that the sender
has not revealed K0,j to the network up to a known
deadline as already described. Therefore, given our
assumptions, the strength of the delayed authen-
tication for multiple receivers is at least as good
as that of the equivalent traditional authentication
scheme, if it is based on the same MAC function
and same size key. For instance, every FLAMeS
receiver eventually has equivalent strength authen-
tication to that of the MAC-based authentication
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used in IPsec [20] {Change this to the IPsec AH
RFC} that is used for immediate authentication by
a single receiver. In fact, the eventual authentica-
tion strength of FLAMeS is possibly stronger, as
the key remains unrevealed during authentication
rather than being shared via a message encrypted
under the sender’s private key as in IPsec.

5.3 Immediate strength

{Got to here — no point reading further}

{stuff here about network attacks — diffserv, over-
taking, delaying, removing, RPF multicast routing
being based on hop counts not minimising latency
etc}

The mere presence of the delayed certainty also de-
ters attackers from attempting a ‘brief spoof’. The
only motivation here would be to create regular
short-term confusion as a form of denial of service.
Given we will show that such attacks are already
difficult to mount, the return wouldn’t seem to jus-
tify the effort in the majority of realistic scenarios.

5.4 General precautions

As with any security system, a weak implementa-
tion of initialisation procedures can compromise the
whole scheme. Possible vulnerabilities that aren’t
particularly specific to the proposal at hand are:

• to break the one-way blinding function in or-
der to calculate keys earlier in the chain and
use them to send spoof messages before the
sender (in the time between messages or since
the session initiation message)

• to predict the initial keys generated by the
sender due to poor random number generation
or to otherwise compromise the sender’s sys-
tem by various nefarious methods.

5.5 Storage and Processing Issues

{How to trade off storage against processing when
producing the chain}

5.6 Efficiency

{Figures on:
number of one-way functions for authentication and
verification per message;
message overhead of authentication.}

The authentication data required for this scheme
is considerably smaller than other state of the art
schemes. If, however, the overhead is still too much,
the MACs can be truncated. For instance, the ‘im-
mediate’ MAC, A0,i, is only a short-term indica-
tor of likely authenticity, therefore half its length
or more could be omitted without serious implica-
tions. If only w1 bits of A0,i were included, a sim-
ilar number, say w2 bits of A1,i could be omitted.
Fig 8 shows the formation of the truncated MACs,
a′0,j and a′1,j . {Add bit about being the same or
a bit longer} As long as the second MAC arrives
within the ‘guaranteed silence’ period, this leaves
the combined pair of MACs hardly any weaker than
for a single MAC of equivalent bit width. This
is because the combined probability of two invalid
truncated MACs colliding simultaneously with two
valid truncated MACs is the same as for one whole
MAC of the same aggregate width. The overall
MAC is slightly weaker as the authenticity of the
remnant a′0,j is still ‘network dependent’ (defined
earlier). Taking this approach, the bandwidth over-
head for isochronous streams is one MAC (bit width
wa {change} in Fig 8) and two keys per message.
{Add bit about being the same or a bit longer} Ob-
viously, the protocol would have to define w1 and
w2, so that receivers could repeat the same trunca-
tion before attempting a match.

two MACs for the price of
one(ish)

A'0,i A'1,i

A0,i A1,i

|A'0|

|A|

|A'1|

|A|

Figure 8: Two MACs for the price of one

{Stuff on equivalent probability of collision}

5.7 Loss-tolerance

{Discuss why FLA1 & 2 are so inherently loss-
tolerant — i) if a key in a key chain is lost, as soon
as a higher one is revealed it allows all the missed
keys to be re-generated. ii) In FLA1 a message only
relies on itself other than the key iii) In FLA2 the
MAC and message always arrive together, making
it impossible to lose one and not the other. The key
arrives separately but lost keys can be regenerated
as in i).}
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6 Applications

This scheme would not be appropriate for an ap-
plication where incoming messages were acted on
immediately (e.g. purchases triggered by authenti-
cated prices), unless roll back were easy if a mes-
sage turned out to be spoof. However, we believe
many applications will find delayed authentication
quite adequate, especially as the ‘guaranteed si-
lence’ timer is typically only a second or so.

Incidentally, this can be used as the basis of an ex-
tremely lightweight, authenticated multicast time-
source, possibly replacing authenticated NTP [24].

7 Limitations and Further
Work

8 Conclusion
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A Bounded clock skew

There follows a simple technique to establish the
upper bound, tD, on how much later the sender’s
clock might be reading than the receiver’s [5,
Ch.20]. We assume that both the sender and re-
ceiver know their maximum linear clock drift rates,
C ′

S and C ′
R respectively.

bounded clock comparison

sender

receiver

receiver's
pessimistic view
of sender clock

CR
+
tD
=
CS

CS

time

Figure 9: Bounded clock skew

The ‘receiver’ sends a ping-like echo request to the
‘sender’ at time CR, which contains a nonce, N
(again, the terms ‘sender’ and ‘receiver’ refer to
their eventual roles, not their roles during this ex-
change). The sender replies with a signed message
containing it’s own clock reading, it’s maximum
clock drift rate and confirmation of the receiver’s
nonce, 〈CS , C ′

S , N, S(AS)〉. S(AS) is the digest of
the message signed with the sender’s private key.
This exchange is illustrated in Fig 9. As long as
the response arrives (it is irrelevant when) the re-
ceiver only need consider the most pessimistic sce-
nario. The sender’s clock cannot have read CS be-
fore the request was sent (the shaded region) as it
would have also had to read CS some time after
the request was sent. Therefore the receiver knows
the latest the sender’s clock could have read when
hers was reading CR, making the maximum adjust-
ment (CS − CR). However, the more time that
passes following the echo exchange, the more the
two clocks might drift. The worst scenario is that
the receiver’s drifts backwards and the sender’s for-
wards, both by their maximum possible drift rates.
Thus, the receiver must assume that, some time,
tR, later than the echo request at time CR, the lat-
est the sender’s clock could read is:

tD = CS − CR + (C ′
S + C ′

R)tR.

We now justify the use of an unauthenticated nonce
in the ‘receiver’s’ echo request. This request with-
out the nonce need carry no information, other than
the fact that it is an echo request. We need not
worry about an attacker delaying the request as
this merely makes the pessimistic estimate of the
‘sender’s’ clock setting more pessimistic. However,

it must not be possible for an attacker to create a
spoof request just before the genuine one, then de-
stroy the real one. Placing a nonce in the request
allows the ‘receiver’ to satisfy herself that the ear-
liest authenticated reply is in response to her own
request, rather than an earlier spoof.

{We now discuss alternatives to this one-to-one ex-
change where the scenario is outside these limita-
tions (impossible?).

One approach is for the sender to set Th,G much
greater than typical round trip times and for the
sender to declare the tolerance on its clock accuracy
relative to an internationally recognised signal [].
Then C ′

i can be taken to be Cr plus a bit.?}
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