
Ultra-Low Delay for All

By Bob Briscoe

At the Bits-N-Bites session at IETF-93 in Prague, something quite remarkable was demonstrated: a
streamed football match that you could pan and zoom with finger gestures on a touch screen–and
still get HD (high definition) at full zoom. The app in itself was pretty neat, but the responsiveness
was the remarkable thing; it seemed to stick to your finger as you panned or pinched.

As you’d expect, attendees had some pretty pointed questions for those responsible: Reducing
Internet Transport Latency (RITE), a team of European Internet researchers whose goal it is to
remove the root causes of unnecessary latency over the Internet. The initiative is funded by the
European commission under the fp7-ICT programme.

Was it cached locally?

No. Each client was feeding the finger gestures to a remote proxy, which was generating the HD
scene on the fly for that user, from a panoramic video of the whole stadium.

Was it just a short cable?

No. Earlier in the week, in the active queue management (AQM) Working Group (WG), the same
technology had been demonstrated using remote login on Bell Labs' broadband testbed. They were
streaming from a proxy in a data centre to a home network across real core, backhaul and digital
subscriber line (DSL) access network equipment—overall 7ms base round trip delay—the sort of
base delay you should get to your local content delivery network (CDN). For Bits-N-Bites, they
were using netem to emulate the same delay.

Was this Diffserv quality of service (QoS)?

No. That was the remarkable thing. Diffserv only gives QoS to some at the expense of others. This
was for all traffic, even under high load. Through a dashboard you could click to add up to 100
parallel Web flows per second, and you could start dozens of downloads to pile on even more load.
Not only did the pan and zoom responsiveness stay 'finger-sticking' good, but a chart on the
dashboard showed that all the other flows were seeing the same ultra-low queuing delay. It
measured the queuing delay of each packet—not just the video but all the Web flows and
downloads. The worst delay was so low you could hardly see the plot—just a couple of pixels.

Issue 02 1 of 3 21-Oct-15

The video sticks to your finger as you pan and zoom with finger gestures and you still get HD at
full zoom

Had they just configured very shallow buffers?

No. The dashboard showed the link was fully utilized.

So what was the magic under the covers?

Quite simply, all they were doing was not using regular transmission control protocol (TCP) (no
New Reno, no Cubic). Instead, they had switched the stacks at both ends to what they called a
scalable TCP, with no need to change the apps. They said any scalable TCP will work, as long as it
uses explicit congestion notification (ECN) as well. For scalable TCP, they were using Data Centre
TCP (DCTCP) unmodified, which Microsoft deployed since Windows Server 8, and there's a Linux
version too.

Then they had set the bottleneck queue to ECN-mark packets above a shallow step threshold.
Access link capacity is typically the bottleneck for DSL, cable and cellular. So, for their
downstream DSL case they only needed this marking at the Broadband Network Gateway (BNG,
aka. BRAS or MSE). The same in the home gateway ought to sort out the upstream as well.

Incremental Deployment?

Could we have this Nirvana on the public Internet? Surely any 'classic' TCP flows from older
machines would introduce queuing delay that would ruin everyone else's perfect day. Also, 'scalable'
TCPs are much more aggressive than 'classic' TCPs. So whenever the two competed, you would
expect 'classic' TCPs to get only a small share of the capacity.

This was where the demo got really interesting. Using the dashboard, you could add 'classic' flows

Issue 02 2 of 3 21-Oct-15

The dashboard. The tiny blue pixels (top-right) showed queuing delay remained ultra-low as 'scalable'
TCP flows were added (top-left). As orange 'classic' TCP flows were added (bottom-left) their delay
profile was no worse than today (bottom-right), but it didn't affect the low delay of blue traffic.
Nonetheless, all flows shared the bandwidth roughly equally (compare top and bottom left), but with no
flow inspection.

as well. But you couldn't get it to affect the ultra-low queuing delay of the 'scalable' packets at all.
And the queuing delay of the 'classic' flows wasn't compromised either—it was no worse than it
would have been if all the load had been 'classic'.

Most impressive, all the flows still shared out the capacity roughly equally, as if they were all the
same type of TCP. But there was no per-flow scheduling—indeed, they weren't inspecting anything
above the Internet Protocol (IP) layer.

How did they do that?

They classified 'classic' traffic into a separate queue to prevent it delaying the 'scalable' traffic.
Then, they coupled dropping and ECN-marking between the two queues, marking scalable flows
more aggressively to exactly counterbalance their more aggressive response to the marks. This
required a square relationship, which they coded really neatly; they just compared the queuing time
against one random number for marking and against two for drop. They have a nice aide-mémoire
for this: “Think twice before dropping.”

Sunsetting TCP?

Back in 2012, when the IETF had embarked on the real-time comms in Web browsers (RTCWEB)
effort, it was known that queuing delay and jitter would often degrade rtcweb. An Internet
Architecture Board (IAB) workshop led to the birth of the RTP Media Congestion Avoidance
Techniques (RMCAT) and the active queue management (AQM) WGs. RMCAT would avoid real-
time traffic adding to the problem, and AQM would at least remove unnecessarily long queues by
tackling so-called 'buffer-bloat'. But the elephant in the room was TCP. Per-flow queuing was
included in the AQM charter as a way to isolate a delay-sensitive flows from TCP, but it was
hedged round with caveats, given the implication that the network would have to identify transport-
layer flows, and decide on their relative capacity shares, not to mention the extra cost—a thousand-
odd queues for a typical residential access.

The technology shown in Prague gives us a new component, using just two queues; a sort-of semi-
permeable membrane that partitions off the harmful delay of 'classic' TCP, without prejudging
where to partition the bandwidth.

The demo showed that the Internet could be so much better without 'classic' TCP. It demonstrated
that a superior 'scalable' class of TCP algorithms already exists. And it showed the path to get from
here to there. It was the IETF at its best.

For more information, see: http://riteproject.eu/dctth

Issue 02 3 of 3 21-Oct-15

http://riteproject.eu/dctth

	Ultra-Low Delay for All
	Was it cached locally?
	Was it just a short cable?
	Was this Diffserv quality of service (QoS)?
	Had they just configured very shallow buffers?
	So what was the magic under the covers?
	Incremental Deployment?
	How did they do that?
	Sunsetting TCP?

