
Policing Freedom
to Use the Internet Resource Pool

Arnaud Jacquet
BT

Bob Briscoe
BT and UCL

Toby Moncaster
BT

Sirius House, Adastral Park, Ipswich, IP5 3RE, UK

firstname.lastname@BT.com

ABSTRACT – Ideally, everyone should be free to use
as much of the Internet resource pool as they can take. But,
whenever too much load meets too little capacity,
everyone's freedoms collide. We show that attempts to
isolate users from each other have corrosive side-effects -
discouraging mutually beneficial sharing of the resource
pool and harming the Internet's evolvability. We describe
an unusual form of traffic policing which only pushes back
against those who use their freedom to limit the freedom of
others. This offers a vision of how much better the Internet
could be. But there are subtle aspects missing from the
current Internet architecture that prevent this form of
policing being deployed. This paper aims to shift the
research agenda onto those issues, and away from earlier
attempts to isolate users from each other.

1. INTRODUCTION
Resource pooling allows separate resources to appear as
one larger resource, giving resilience and efficiency gains.
The history of communications has seen advances in
resource pooling over more and more dimensions [14].

• Packet switching removes the need for circuits as each
link acts as a pool for packets from many sessions.

• Packets can be time-shifted into a continuous time pool
by utilising a buffer at a link rather than using time slots.

• Multipath routing pools together separate links into one
network resource [7].

• Swarming downloads (e.g. BitTorrent) let receivers pool
multiple peers into one data source thus pooling the
network paths from these peers.

By design, the public Internet gives everyone the freedom
to use as large a share as they can take of any network

 All authors are partly funded by Trilogy, a research project (ICT-
216372) supported by the European Community. The views
expressed here are those of the authors only.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ReArch'08, December 9, 2008, Madrid, SPAIN Copyright 2008
ACM 978-1-60558-234-4/08/0012 ...$5.00.

equipment in the world, as often as they want. It is the
classic pooled (or cloud) resource. This freedom has
fostered an amazing array of inventive new uses for
computers and communications.

Although pooling can make maximal use of available
resources, congestion still results if too much pooled load
meets too little pooled capacity. When any one customer's
freedom to use the pool starts to limit the freedom of others
we have no principled way to resolve the resulting
conflicts. As we shall see, the cause turns out to be a subtle
lack of architectural support. In the eighties voluntary
restraint allowed this lack of resource accountability to be
last in the list of requirements for the Internet Architecture
[3]. But in today’s primarily commercial deployment this
lack of architectural support for resolving conflicts over
pooled resources is fuelling an ‘arms race’.

ISPs want to prevent a few customers from using the whole
resource pool to the exclusion of others. Otherwise
everyone assumes the ISP has grossly under-supplied
capacity. So as each new way is found to pool resources,
new piecemeal constraints are invented to 'unpool' usage
into pieces that ISPs know how to control (we survey the
most influential approaches in §3). This becomes a vicious
cycle and it is becoming increasingly hard to invent a new
use for the Internet that can also pick its way through the
trail of throttles and blocks resulting from this arms race.

Everyone's usage should be able to range freely over all
dimensions of the resource pool and only be constrained
when they restrict the freedom of others. Any usage should
also be free not to yield to other usage, but the pressure to
yield should increase the more congestion it experiences,
and the longer this congestion persists. We are not saying
ISPs ought to provide such an unconstrained service, but
the architecture shouldn't prevent them doing so.

To this end, this paper uses a familiar conceptual device – a
token bucket – but in an unfamiliar way. It controls the
'congestion bit rate' of a customer, rather than their actual
bit rate. Readers will be familiar with token buckets that
discard packets that locally exceed the token rate and burst
size. Instead the proposed policer solely counts the subset
of packets that are congestion marked. Its token rate and
burst size then places an overall limit on how much
congestion packets traversing it can cause everywhere else

– when all taken together regardless of flows.

Imagine a customer accessing multiple remote sites using
multiple flows. As congestion rises for a subset of the
flows, the policer makes it advantageous to have a transport
that shifts more traffic onto less congested paths [14] which
is feasible if all the remote sites are serving the same data
(e.g. using BitTorrent) or multiple paths are being used to
the same service. If however some flows can only use those
paths with rising congestion, the policer gives them no
choice but to reduce their rate.

Thus, as well as limiting the total cost (congestion) that one
customer can cause others, this simple bulk policer ensures
each flow exhibits a dynamic response to congestion, but
without policing each flow. Not all applications have to
respond quickly to congestion, as long as the overall
response is sufficient. If it isn't, the policer will eventually
force even inelastic flows to terminate. This paper doesn’t
focus on exactly how transports will evolve. Instead we
predict evolution towards weighted congestion controls
[13] for elastic applications, or weighted congestion-driven
admission control for inelastic applications. In section 6.2
we briefly describe how end systems might know how to
weight their transports.

Note that we are not proposing this policer as an essential
piece of the Internet architecture. It is a simple (albeit
effective) example of what ISPs ought to be able to do, but
currently cannot because the Internet architecture prevents
them. The aim is to use this policer to focus the research
agenda on the architectural changes needed to resolve
conflicts within the Internet resource 'cloud'. In the current
architecture endpoints detect path congestion, but we show
that networks need to see path congestion too.

Next we present the target architecture we believe is
required for congestion policing to be feasible. Then we
place our work in the context of other influential ways to
police network traffic. In §4 we introduce the details of the
policer itself. In §5, we describe how policing congestion in
bulk encourages individual flows to respond to congestion.
We defer discussion to §6, before concluding.

2. TARGET ARCHITECTURE
• We avoid locating any mechanism at network resources

themselves for resolving usage conflicts. Otherwise, to
decide how much of itself to allocate, each resource
would have to know how much each customer was using
every other resource in the pool;

• Instead, policing is located at the 'enforcement point'
where a customer attaches (Fig.1);

• To police congestion experienced elsewhere, ISPs need
remote congestion to be visible in network layer headers;

• To do this we need every resource to randomly mark
packets as it approaches congestion (explicit congestion
notification or ECN [12]);

• ECN reveals remote congestion to policers at the exits of
the resource pool. Policers at the entrances can see remote
congestion by making packet delivery conditional on the
sender also marking packets with the congestion it

expects on the rest of the path (re-ECN [2]);

• To be concrete, we assume policing at every entrance
(Fig 1), then §6.4 compares it with policing on exit.

• The literature [2] explains how to use congestion revealed
in packets for bulk inter-domain traffic contracts that
incentivise one network to police congestion in another;

• Only the overall traffic of each customer is policed;

• Making individual flows conform to a given congestion
response is a non-goal; it would prevent evolution of
perfectly reasonable new behaviours that shift the duty of
responding to congestion around the pool of usage;

• There is no need to identify or to trust remote endpoint
identifiers like source IP addresses and port numbers.
Even if virtual customers share the same physical
attachment, only locally assigned identifiers need to be
trusted (link-local IDs like L2TP or VPNs).

Fig. 1. A set of congestion policers protecting

all the entrances to a resource pool

This architecture polices packets not flows. It can only do
this by adding information about remote congestion to
network layer headers, which makes each packet
sufficiently self-contained to be held accountable by the
resources it uses downstream. This is feasible because
congestion is a property of every bit in each packet, unlike
bit-rate which is meaningless below flow granularity. Once
packets are accountable, in turn those who transfer them
into (or out of) the resource pool can be held accountable
by their network provider locally at their attachment point.

This architecture currently only improves resource pooling
for ECN-capable packets. This places a new question on
the research agenda: To support resource accountability
should the network include some aspect of loss detection,
rather than leaving it solely to endpoint transports?

3. RELATED WORK
Table 1 displays some of the most influential approaches
for policing Internet resource usage, arranged along a
spectrum that characterises how flexible each approach is
to resource pooling. ”Flexibility” attempts to convey how
much each approach encourages and assists the shifting of
load across different dimensions of the resource pool. Each
is further characterised by what 'Metric' it uses to judge
excessive usage and what 'Constraint' it places on usage
when the metric rises.

In terms of flexibility to pool resources, the critical feature
of each approach is the granularity at which it applies
metering and policing ('/customer', '/source', '/link', etc).

The term 'per customer' doesn’t mean 'per user' but 'per
locally attached contractual entity'. The customer
relationship need not be commercial. The term customer
includes customers with many users. 'Per link' means that
usage conflicts are resolved at each bottleneck link (not
necessarily all links, just those likely to congest). For
brevity, we will only discuss some rows of the table.

Table 1. Spectrum of policing approaches

Name Metric Constraint Flexibility

voluntary
restraint

rate /customer peak rate /customer
↑
free

constrained

↓

Congestion
pricing congestion

/customer

pricing /customer

Congestion

policing

congestion rate-burst

/customer

vol. pricing

(peak period)
volume /customer

pricing /customer

volume cap rate cap /customer

deep packet
inspection

rate cap
/customer /app type

(W)FQ
Packet presence
/source /link

(weighted) equal rate
share /source /link

(W)FQ -ditto- but /flow /link -ditto- but /flow /link
both &
neither bottleneck

flow policer
rate share
/flow /link

rate cap /flow /link

Voluntary restraint is exercised in the current Internet by
application developers who choose a congestion responsive
transport like TCP. In an unpublished 'survey of 14 surveys'
(2003-6) we found that TCP comprises 73%-94% of traffic.
But some customers can run more TCP sessions than others
and for much more of the time, so it is a fallacy that
prevalent use of TCP implies anything about fair, equitable
sharing of capacity (§6.1). It implies only that a voluntary
dynamic response to congestion is still prevalent.

Congestion pricing involves deployment of ECN then
charging for the volume of packets marked 'congestion
experienced'. It is structurally very similar to the
congestion policing scheme of this paper. Gibbens & Kelly
wanted to allow applications to evolve without specific
constraints on how they should respond to congestion, but
within an overall economic incentive to cause no more
congestion than you would be prepared to pay for [6].

Congestion policing is the focus of this paper. We show it
can provide the same incentives as dynamic congestion
pricing with the same clean engineering simplicity. But we
want ISPs to be free in their choice of pricing model,
including flat fees. So we follow the advice of Odlyzko,
who gathered evidence across many market sectors to show
that, on short timescales, customers prefer rationing of
supply to dynamic variation in price [9].Congestion pricing
gives people too much freedom – they worry they will
spend more than they have budgeted for.

Volume is used as the metric in the next three rows of the
table. Unlike congestion, using volume doesn't produce

particularly correct incentives, but it is currently a
pragmatic alternative, given ECN is not widely deployed
and the Internet architecture wasn't designed for remotely
detecting losses in the network layer.

Counting only peak volume would better approximate
congestion. However, this still counts traffic on
uncongested paths as much as on congested paths. Also, the
majority of traffic in a network is in the large transfers, but
accounting for volume gives them no incentive to back
away during peaks in congestion, whereas accounting
directly for congestion does. If a large transfer gave short
flows the space to go faster they would finish much earlier,
freeing up capacity sooner for the long-running traffic. So
accounting for congestion makes the network appear very
fast for interactive traffic without affecting the completion
time of larger transfers. Whereas accounting for volume
gives no incentive for traffic to re-arrange itself along the
time dimension of the resource pool.

Fair queuing (FQ) [8], which may be weighted (WFQ),
divides up a link's instantaneous rate into equal (or
weighted) proportions among active sources. When an
active source sends more traffic than others, (W)FQ gives it
a share of the bandwidth in proportion to its relative
weight: its traffic is buffered rather than allowed to infringe
on the share of other active sources.

The (W)FQ design did recognise the importance of the time
dimension, but nothing like enough: it preferentially treats
sources with lower activity on very short timescales (based
solely on the arrival time of the source’s previous packet),
but the asymptotic bandwidth allocation doesn’t depend on
the activity of the sources [4]. Sources would gain very
little from shifting their activity to less congested paths or
times (on timescales from roundtrips to days), because
(W)FQ only considers instantaneous, local congestion.

Of course, the original goal of FQ was to isolate users from
each other. We are not implying this is never a worthwhile
goal. Our aim is merely to highlight that isolation hides
opportunities for valuable co-operation.

Per flow granularity policing was first proposed in the
same paper [4] and was followed by numerous bottleneck
flow policing proposals [5,11]. From the start, Demers et al

recognised that any host could increase its link share
without bound by opening connections with multiple other
endpoints, which swarming downloads have now made
commonplace. Not only do these per-flow approaches
constrain all flows too little, they also constrain collections
of flow too much (§5). They proscribe reasonable transport
designs where flows use the flexibility of the resource pool
but they do nothing at run-time to prevent the set of a
customer's flows overloading the resource pool [1].

4. POLICING CONGESTION
A system will encourage optimal behaviour if all the costs
each individual causes others to suffer are reflected back on
that individual [6]. The challenge we set ourselves is to do
this without unpredictable bills.

We set the constraint that the customer pays a flat monthly
fee to its ISP. This funds a constant rate, w, of congestion
tokens filling a bucket (Fig 2) – ISPs may give customers
the choice between different values of w. Unlike with a
classic token bucket, only congestion marked packets
consume tokens. So tokens are not consumed based on the
amount of traffic sent, but on the amount of congestion the
traffic causes, which ensures the customer suffers the cost
of its behaviour on others. If the policed customer
generates flows i=1..N, each of throughput xi(t) over a path
experiencing congestion pi(t), the bucket empties at a rate

∑ pi(t)·xi(t), which we will call the congestion bit rate (a
classical token bucket would consume tokens at rate

∑ xi(t)). The depth β of the bucket allows the customer to
cause bursts of congestion, allowing for fluctuations in
network conditions, and in the customer's own needs.

Fig. 2. A congestion policer can be implemented as a modified

token bucket

So long as the customer stays below its congestion
allowance, the policer merely monitors the congestion bit
rate passively. But whenever the congestion bit rate
empties the bucket, the policer penalises the aggregate it
monitors. The penalty can take different forms: packets
may be delayed or dropped.

We choose to make the policer's penalty signals
indistinguishable from bandwidth congestion signals (but
the shadow policer in Section 6.2 allows end-points to
separately track and minimise the former). We wanted to
show that the simplest possible policer was sufficient, but
we don’t preclude the development of richer signalling.
Dropping traffic keeps the congestion bit rate within the
allowance and gives customers the strongest incentive to
control their congestion bit rate themselves. The policer
might transition smoothly from passive monitoring to
actively penalising traffic. However, initial analysis
suggests a smooth transition serves no purpose, though
further research is required to confirm this.

5. IMPACT OF THE POLICER

5.1 Impact on the flows of the policed customer

One of the key features of the congestion policer is that it
doesn’t enforce a specific response to congestion per flow.
Each flow is free to use any congestion response so long as
all flows together don't cause the overall congestion bit rate
of the customer to exceed the allowance given.

To explain, let’s first imagine a policer configured to allow
only an unrealistically low congestion bit-rate. Fig. 3
illustrates the effect of such a policer on a single long-
running flow: either a TCP flow (congestion response:

yTCP) or a constant bit-rate flow (congestion response:
yCBR). If congestion increases enough, and the flow runs at
a high enough rate for long enough, the sustained high
congestion bit rate will empty the bucket. The policer will
then override the congestion response of the flow so that
the congestion bit rate equals the allowance (p.ypoliced(p)=w)
which gives the shape of the congestion response imposed
by the policer: ypoliced(p)=w/p.

The TCP flow has its own long-term congestion response,
yTCP(p), which follows the well-know inverse square-root
law [10] (for brevity we assume constant segment size &
RTT). If the customer's allowance is low enough, it crosses
the policer's congestion response at pTCP. As long as
p<pTCP, the policer has no effect and the throughput is
given by the TCP congestion response. If p>pTCP for long
enough the policer starts to limit throughput to ypoliced

instead. Note that, even when the allowance is scaled down
to police a single flow, the response curve of the policer is
not the same as TCP's. This merely illustrates that TCP's
response wasn't designed to fully reflect its economic
externalities.

The effect is even more significant for the unresponsive
flow. Its throughput remains constant while p<pCBR. But if
p>pCBR for long enough, the policer makes the flow follow
the congestion response defined by ypoliced too.

Fig. 3. If set harshly, the congestion policer would impose

default congestion response ypoliced on single flows

More realistically, the allowance would be much higher to
allow multiple flows of customer traffic. In the special case
where all flows exhibited the same congestion response and
shared the same path, the scenario would be equivalent but
linearly scaled: a policer with 100 times higher allowance
would start limiting 100 sustained TCP flows over a path
with congestion pTCP.

More generally, given the policer treats all flows in bulk,
the congestion bit rate of each flow has the potential to
affect the throughput of all others. In order to see how this
encourages more elastic flows to compensate for less
elastic flows, we must first quantify the cross-flow
interaction the policer introduces.

The unpoliced congestion bit rate of a customer is
v=Σpi·yi(pi), where yi is the congestion response of flow i's
data rate. The policer starts to intervene if v>w for long
enough. The penalty imposed to bring v back under w is the
same on all packets. Thus the policer increases the apparent
congestion level for all flows by the same amount π.

Fig. 4a shows how the throughput of a responsive flow is
reduced to xi = yi(pi + π), based on its congestion response.
TCP flows in steady state have a congestion response
proportional to 1/√p. So, for small values of π, linear
approximation gives the flow’s throughput as:

 xi = yi(pi + π)

 ~ yi(pi) + π·yi'(pi) = yi(pi)·(1 - π/(2pi))
The pi in the denominator shows that the congestion policer
has the greatest effect on flows on the least congested
paths. Customers aiming to maximise their total throughput
thus have the incentive to take charge of congestion control
across all their flows (esp. those on the most congested
paths), to make the most of their congestion allowance.

T
h
ro
u
g
h
p
u
t

Congestionpi

xi

+ππππu

yi(pi)

policed

unpoliced

T
h
ro
u
g
h
p
u
t

Congestionpi

xi

+ππππ

yCBR,i

policed

unpoliced

Fig. 4. Effect of bulk policing on a responsive flow (a) and

unresponsive flow (b)

Using the same analysis, Fig. 4b illustrates how the policer
forces unresponsive flows to respond to congestion,
reducing throughput from yCBR,i to xi = yCBR,i ·(1- π). The
congestion bit rate of the flow is reduced from the larger
light grey area to the smaller dark grey area.

If a customer has a mix of elastic and CBR traffic the
policer allows the customer to let its CBR flows remain
unresponsive through heavy congestion. At the same time
it causes packet drops that force elastic flows to
compensate. These extra drops should encourage evolution
of host optimisation software (§6.2) that ensures elastic
flows compensate in advance by reacting more strongly to
congestion, as the customer's overall traffic approaches the
policed allowance. Effectively, elastic transports don't have
to be modified for the policer to make them self-sacrifice to
CBR flows, but if they do, the customer is better off.

5.2 Impact on cross traffic

Each customer’s traffic clearly benefits if the congestion
bit-rate of competing cross-traffic is limited. Indeed, every
other customer benefits when sources of heavy congestion
are pressured to shift to less congested bottlenecks and if
they can be prevented from contributing excessive
congestion, across one or several parallel bottlenecks.

6. DISCUSSION

6.1 Why per flow responsiveness is not enough

Imagine customer A uses 98 shares of a bottleneck and
customer B uses 2. If the bottleneck loses half its capacity,
they can both halve their usage to prevent congestion.
However, A still has 49 times more than B. A might have
opened 98 TCPs while B opened only 2. Or A might keep 2

TCPs active 49 times more often. Therefore prevalent per
flow congestion responsiveness certainly prevents
congestion collapse. But it is a fallacy that it also controls
fair sharing of resources, particularly given it ignores
sharing over time.

However, our congestion policer shows the reverse
approach is fruitful. Ensuring fair shares of everyone's
overall congestion contribution does also ensure per flow
congestion responsiveness – both voluntarily and
ultimately by enforced intervention (§5).

6.2 Endpoint evolution driven by congestion policing

Policing a customers’ overall congestion is designed to
make their own congestion control evolve beneficially. If
the policing is triggered by the customer's overall
behaviour, it doesn’t discriminate between flows. So any
valuable flows over uncongested paths will be
unnecessarily throttled. Endpoint developers will be driven
by demanding users to create software to maximise the
value they get out of the network under such a constraint. It
is likely strategies will be found that minimise user
intervention, so they can spread to the mass market.

For instance users' transports should gradually evolve to
use a weighted congestion control [13] where high-priority
foreground traffic is given a greater weight than low
priority background traffic. We envisage application logic
would set each flow’s weight. Then the operating system
might recalibrate these weights dependent on the run-time
level of the shadow policer.

w

v*
w - v*

foreground

background

w

Fig. 5. A dual ‘shadow’ policer assists endpoints that

can distinguish foreground and background traffic

Such software that can discriminate between foreground
and background flows could further protect foreground
traffic by using the dual ‘shadow’ policer shown in Fig. 5.
Foreground traffic is unconstrained by this policer but its
congestion bit rate v* is monitored (as long as it remains
within the overall allowance). Meanwhile, background
traffic is more severely constrained by another congestion
policer, against the surplus allowance w-v* unused by
foreground traffic.

This example shows that minimal constraints imposed at
customer attachment points are sufficient to replace any
deep packet inspection the ISP might otherwise impose.

6.3 Choice of Bucket Depth

The bucket depth gives the extent to which sporadic
customers can 'roll over' the congestion allowance gained
during idle periods. It also defines the maximum
congestion burst a customer may cause over the network.

(a) (b)

Congestion would be more predictably smooth if everyone
were limited to smaller bucket depths, but this would
reduce flexibility to make urgent demands on the network.
Further research is planned to formalise this trade-off.

6.4 Policing upstream or downstream?

The same token bucket-based contract could be used to
either police a customer's upstream (outgoing) traffic as in
Fig. 1, downstream (incoming) traffic - or both. However,
the choice has profound architectural implications.

A strong argument can be made for policing upstream
traffic, so that it can be limited before it does any damage.
Also, at the network layer, the sender is ultimately
responsible for sending excess traffic into the network.
Certainly the receiver may have originally requested the
connection (and blame might be traced back further), but
that is all strictly above the scope of the packet forwarding
layer that a policer protects. However, the policer we have
described relies on counting congestion markings in the
packets it handles, and at the ingress they haven't yet
traversed any congestion. The re-ECN protocol [2], which
forces the sender to mark expected congestion into packets,
is a proposed solution to this problem.

On the other hand, ECN already makes it straightforward
for the policer to count congestion information arriving in
downstream traffic. Discarding downstream traffic doesn't
necessarily stop the sender continuing to cause congestion,
but it does stop the receiver getting the data. In most cases,
except deliberate malice, the receiver's feedback loop
would have the desired effect of slowing the sender to the
policed rate. However, any sender could run down the
receiver's token bucket with unsolicited traffic, so policing
downstream traffic would open a new DoS vulnerability.

We need to make it clear that, if network A deploys the
policer we have proposed at its customer's attachment
point, it doesn't only police congestion experienced in
network A. It is intended to count congestion experienced
all along the path in other networks. Nonetheless, at the
start of incremental deployment, a network gains from
having policers deployed for both traffic directions.

7. CONCLUSION
We lack principled ways for ISPs to prevent customers
over-using a 'cloud' service like the Internet. ISPs often use
ad hoc techniques (such as rate and volume-based
conditioning contracts) to isolate users from the adverse
effects of others. But users' software then lacks adequate
signals and incentives to shift traffic around the resource
pool - to less congested links or times. As fast as advances
in resource pooling are being invented, these over-
restrictive ad hoc controls are undermining them.

We propose a general purpose traffic conditioning contract
that is more appropriate for a cloud service than these rate
and volume-based alternatives. It can be implemented by a
simple token bucket at the customer's attachment point,
which limits the customer's total contribution to congestion
anywhere in the resource pool.

Without imposing any particular behaviour on individual
flows, this policer encourages flows to move to less
congested paths and to respond to congestion on their own
path. If they don't, it protects the freedoms of others using
the resource pool by forcing a response across all flows.
But the imposed response will always be worse than the
customer's own software taking charge of each flow's
separate response. This approach empowers users to take
charge of their aggregate usage of the resource pool.
Congestion rationing is the trade-off they are submitted to
in exchange for greater flexibility to take control decisions.

The entrenched tradition of restricting everyone's access
bit-rate unnecessarily prevents much higher bit-rates, while
the current alternative of imposing a response on each flow
certainly prevents congestion collapse but it cannot control
resource sharing as claimed and it restricts evolution of
new transport behaviours.

We believe the architectural agenda should shift from
improving per-flow controls to improving information flow
in packet headers. We ask what information would make
packets sufficiently self-contained to be held accountable
for the congestion they contribute to. We have shown that
ECN may be sufficient, but open questions remain
concerning whether resource accountability also requires
prevailing loss to be revealed in packet headers, and
whether rest-of-path congestion is needed.

8. REFERENCES
[1] B. Briscoe. “Flow Rate Fairness: Dismantling a Religion”, ACM

CCR 37(2). (Apr. 2007).

[2] B. Briscoe, A. Jacquet, T. Moncaster and A Smith. “Re-ECN: adding
accountability for causing congestion to TCP/IP”, draft-briscoe-
tsvwg-re-ecn-tcp-06 (Jul. 2008, work in progress)

[3] D. Clark, "The design philosophy of the DARPA internet protocols",
Proc. ACM SIGCOMM'88. (Aug 1988)

[4] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm”, ACM Symposium proc. on
Communications architectures & protocols. (1989)

[5] S. Floyd and K. Fall. “Promoting the use of end-to-end congestion
control in the Internet”, IEEE/ACM ToN. (Aug. 99)

[6] R.J. Gibbens and F.P. Kelly. Resource pricing and the evolution of
congestion control. Automatica 35. (1999)

[7] C.N. Laws. “Resource Pooling in Queueing Networks with Dynamic
Routing” Advances in Applied Probability.(Sep.1992)

[8] J. Nagle. "On packet switches with infinite storage." IEEE Trans. on
Communications, 35(4). (Apr. 1987)

[9] A. M. Odlyzko. “Paris Metro Pricing for the Internet”, Proc. ACM
Conference on Electronic Commerce (EC'99). (1999)

[10] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP
Throughput: A Simple Model and its Empirical Validation”. Proc.
ACM SIGCOMM '98. (Aug. 1998)

[11] R. Pan, L. Breslau, B. Prabhaker, S. Shenker. "Approximate fairness
through differential dropping". ACM CCR 33(2).

[12] K. Ramakrishnan, S. Floyd, and D. Black, "The Addition of Explicit
Congestion Notification (ECN) to IP", RFC 3168.

[13] V. A. Siris, C. Courcoubetis, and G. Margetis. “Service
differentiation and performance of weighted window-based
congestion control and packet marking algorithms in ECN
networks”, Computer Communications 26(4): 314-326 (2003)

[14] D Wischik, M. Handley, and M. Bagnulo Braun. “The Resource
Pooling Principle”, ACM CCR 38(4), (Oct. 2008)

