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ABSTRACT    – Ideally, everyone should be free to use 
as much of the Internet resource pool as they can take. But, 
whenever too much load meets too little capacity, 
everyone's freedoms collide. We show that attempts to 
isolate users from each other have corrosive side-effects - 
discouraging mutually beneficial sharing of the resource 
pool and harming the Internet's evolvability. We describe 
an unusual form of traffic policing which only pushes back 
against those who use their freedom to limit the freedom of 
others. This offers a vision of how much better the Internet 
could be. But there are subtle aspects missing from the 
current Internet architecture that prevent this form of 
policing being deployed. This paper aims to shift the 
research agenda onto those issues, and away from earlier 
attempts to isolate users from each other.  

1. INTRODUCTION 
Resource pooling allows separate resources to appear as 
one larger resource, giving resilience and efficiency gains. 
The history of communications has seen advances in 
resource pooling over more and more dimensions [14].  

• Packet switching removes the need for circuits as each 
link acts as a pool for packets from many sessions. 

• Packets can be time-shifted into a continuous time pool 
by utilising a buffer at a link rather than using time slots. 

• Multipath routing pools together separate links into one 
network resource [7]. 

• Swarming downloads (e.g. BitTorrent) let receivers pool 
multiple peers into one data source thus pooling the 
network paths from these peers. 

By design, the public Internet gives everyone the freedom 
to use as large a share as they can take of any network 
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equipment in the world, as often as they want. It is the 
classic pooled (or cloud) resource. This freedom has 
fostered an amazing array of inventive new uses for 
computers and communications.  

Although pooling can make maximal use of available 
resources, congestion still results if too much pooled load 
meets too little pooled capacity. When any one customer's 
freedom to use the pool starts to limit the freedom of others 
we have no principled way to resolve the resulting 
conflicts. As we shall see, the cause turns out to be a subtle 
lack of architectural support. In the eighties voluntary 
restraint allowed this lack of resource accountability to be 
last in the list of requirements for the Internet Architecture 
[3]. But in today’s primarily commercial deployment this 
lack of architectural support for resolving conflicts over 
pooled resources is fuelling an ‘arms race’. 

ISPs want to prevent a few customers from using the whole 
resource pool to the exclusion of others. Otherwise 
everyone assumes the ISP has grossly under-supplied 
capacity. So as each new way is found to pool resources, 
new piecemeal constraints are invented to 'unpool' usage 
into pieces that ISPs know how to control (we survey the 
most influential approaches in §3). This becomes a vicious 
cycle and it is becoming increasingly hard to invent a new 
use for the Internet that can also pick its way through the 
trail of throttles and blocks resulting from this arms race.  

Everyone's usage should be able to range freely over all 
dimensions of the resource pool and only be constrained 
when they restrict the freedom of others. Any usage should 
also be free not to yield to other usage, but the pressure to 
yield should increase the more congestion it experiences, 
and the longer this congestion persists. We are not saying 
ISPs ought to provide such an unconstrained service, but 
the architecture shouldn't prevent them doing so. 

To this end, this paper uses a familiar conceptual device – a 
token bucket – but in an unfamiliar way. It controls the 
'congestion bit rate' of a customer, rather than their actual 
bit rate. Readers will be familiar with token buckets that 
discard packets that locally exceed the token rate and burst 
size. Instead the proposed policer solely counts the subset 
of packets that are congestion marked. Its token rate and 
burst size then places an overall limit on how much 
congestion packets traversing it can cause everywhere else 

– when all taken together regardless of flows.  



Imagine a customer accessing multiple remote sites using 
multiple flows. As congestion rises for a subset of the 
flows, the policer makes it advantageous to have a transport 
that shifts more traffic onto less congested paths [14] which 
is feasible if all the remote sites are serving the same data 
(e.g. using BitTorrent) or multiple paths are being used to 
the same service. If however some flows can only use those 
paths with rising congestion, the policer gives them no 
choice but to reduce their rate.  

Thus, as well as limiting the total cost (congestion) that one 
customer can cause others, this simple bulk policer ensures 
each flow exhibits a dynamic response to congestion, but 
without policing each flow. Not all applications have to 
respond quickly to congestion, as long as the overall 
response is sufficient. If it isn't, the policer will eventually 
force even inelastic flows to terminate. This paper doesn’t 
focus on exactly how transports will evolve. Instead we 
predict evolution towards weighted congestion controls 
[13] for elastic applications, or weighted congestion-driven 
admission control for inelastic applications. In section 6.2 
we briefly describe how end systems might know how to 
weight their transports.  

Note that we are not proposing this policer as an essential 
piece of the Internet architecture. It is a simple (albeit 
effective) example of what ISPs ought to be able to do, but 
currently cannot because the Internet architecture prevents 
them. The aim is to use this policer to focus the research 
agenda on the architectural changes needed to resolve 
conflicts within the Internet resource 'cloud'. In the current 
architecture endpoints detect path congestion, but we show 
that networks need to see path congestion too. 

Next we present the target architecture we believe is 
required for congestion policing to be feasible. Then we 
place our work in the context of other influential ways to 
police network traffic. In §4 we introduce the details of the 
policer itself. In §5, we describe how policing congestion in 
bulk encourages individual flows to respond to congestion. 
We defer discussion to §6, before concluding.  

2. TARGET ARCHITECTURE  
• We avoid locating any mechanism at network resources 

themselves for resolving usage conflicts. Otherwise, to 
decide how much of itself to allocate, each resource 
would have to know how much each customer was using 
every other resource in the pool; 

• Instead, policing is located at the 'enforcement point' 
where a customer attaches (Fig.1); 

• To police congestion experienced elsewhere, ISPs need 
remote congestion to be visible in network layer headers;  

• To do this we need every resource to randomly mark 
packets as it approaches congestion (explicit congestion 
notification or ECN [12]); 

• ECN reveals remote congestion to policers at the exits of 
the resource pool. Policers at the entrances can see remote 
congestion by making packet delivery conditional on the 
sender also marking packets with the congestion it 

expects on the rest of the path (re-ECN [2]); 

• To be concrete, we assume policing at every entrance 
(Fig 1), then §6.4 compares it with policing on exit. 

• The literature [2] explains how to use congestion revealed 
in packets for bulk inter-domain traffic contracts that 
incentivise one network to police congestion in another; 

• Only the overall traffic of each customer is policed; 

• Making individual flows conform to a given congestion 
response is a non-goal; it would prevent evolution of 
perfectly reasonable new behaviours that shift the duty of 
responding to congestion around the pool of usage; 

• There is no need to identify or to trust remote endpoint 
identifiers like source IP addresses and port numbers. 
Even if virtual customers share the same physical 
attachment, only locally assigned identifiers need to be 
trusted (link-local IDs like L2TP or VPNs).  

 
Fig. 1. A set of congestion policers protecting  

all the entrances to a resource pool 

This architecture polices packets not flows. It can only do 
this by adding information about remote congestion to 
network layer headers, which makes each packet 
sufficiently self-contained to be held accountable by the 
resources it uses downstream. This is feasible because 
congestion is a property of every bit in each packet, unlike 
bit-rate which is meaningless below flow granularity. Once 
packets are accountable, in turn those who transfer them 
into (or out of) the resource pool can be held accountable 
by their network provider locally at their attachment point. 

This architecture currently only improves resource pooling 
for ECN-capable packets. This places a new question on 
the research agenda: To support resource accountability 
should the network include some aspect of loss detection, 
rather than leaving it solely to endpoint transports? 

3. RELATED WORK 
Table 1 displays some of the most influential approaches 
for policing Internet resource usage, arranged along a 
spectrum that characterises how flexible each approach is 
to resource pooling. ”Flexibility” attempts to convey how 
much each approach encourages and assists the shifting of 
load across different dimensions of the resource pool. Each 
is further characterised by what 'Metric' it uses to judge 
excessive usage and what 'Constraint' it places on usage 
when the metric rises.  

In terms of flexibility to pool resources, the critical feature 
of each approach is the granularity at which it applies 
metering and policing ('/customer', '/source', '/link', etc). 



The term 'per customer' doesn’t mean 'per user' but 'per 
locally attached contractual entity'. The customer 
relationship need not be commercial. The term customer 
includes customers with many users. 'Per link' means that 
usage conflicts are resolved at each bottleneck link (not 
necessarily all links, just those likely to congest). For 
brevity, we will only discuss some rows of the table.  

Table 1. Spectrum of policing approaches 

Name Metric Constraint Flexibility 

voluntary 
restraint 

rate /customer peak rate /customer 
↑ 
free 

 

 

 

 

 

 

 

constrained 

↓ 

Congestion 
pricing congestion 

/customer 

pricing /customer 

Congestion  

policing 

congestion    rate-burst 

/customer 

vol. pricing 

(peak period) 
volume /customer 

pricing /customer 

volume cap rate cap /customer 

deep packet 
inspection 

rate cap  
/customer /app type 

(W)FQ 
Packet presence 
/source /link 

(weighted) equal rate 
share /source /link 

(W)FQ -ditto- but /flow /link -ditto- but /flow /link 
both & 
neither bottleneck         

flow policer 
rate share 
/flow /link 

rate cap /flow /link 

Voluntary restraint is exercised in the current Internet by 
application developers who choose a congestion responsive 
transport like TCP. In an unpublished 'survey of 14 surveys' 
(2003-6) we found that TCP comprises 73%-94% of traffic. 
But some customers can run more TCP sessions than others 
and for much more of the time, so it is a fallacy that 
prevalent use of TCP implies anything about fair, equitable 
sharing of capacity (§6.1). It implies only that a voluntary 
dynamic response to congestion is still prevalent. 

Congestion pricing involves deployment of ECN then 
charging for the volume of packets marked 'congestion 
experienced'. It is structurally very similar to the 
congestion policing scheme of this paper. Gibbens & Kelly 
wanted to allow applications to evolve without specific 
constraints on how they should respond to congestion, but 
within an overall economic incentive to cause no more 
congestion than you would be prepared to pay for [6]. 

Congestion policing is the focus of this paper. We show it 
can provide the same incentives as dynamic congestion 
pricing with the same clean engineering simplicity. But we  
want ISPs to be free in their choice of pricing model, 
including flat fees. So we follow the advice of Odlyzko, 
who gathered evidence across many market sectors to show 
that, on short timescales, customers prefer rationing of 
supply to dynamic variation in price [9].Congestion pricing 
gives people too much freedom – they worry they will 
spend more than they have budgeted for.  

Volume is used as the metric in the next three rows of the 
table.  Unlike congestion, using volume doesn't produce 

particularly correct incentives, but it is currently a 
pragmatic alternative, given ECN is not widely deployed 
and the Internet architecture wasn't designed for remotely 
detecting losses in the network layer. 

Counting only peak volume would better approximate 
congestion. However, this still counts traffic on 
uncongested paths as much as on congested paths. Also, the 
majority of traffic in a network is in the large transfers, but 
accounting for volume gives them no incentive to back 
away during peaks in congestion, whereas accounting 
directly for congestion does. If a large transfer gave short 
flows the space to go faster they would finish much earlier, 
freeing up capacity sooner for the long-running traffic. So 
accounting for congestion makes the network appear very 
fast for interactive traffic without affecting the completion 
time of larger transfers. Whereas accounting for volume 
gives no incentive for traffic to re-arrange itself along the 
time dimension of the resource pool. 

Fair queuing (FQ) [8], which may be weighted (WFQ), 
divides up a link's instantaneous rate into equal (or 
weighted) proportions among active sources. When an 
active source sends more traffic than others, (W)FQ gives it 
a share of the bandwidth in proportion to its relative 
weight: its traffic is buffered rather than allowed to infringe 
on the share of other active sources.  

The (W)FQ design did recognise the importance of the time 
dimension, but nothing like enough: it preferentially treats 
sources with lower activity on very short timescales (based 
solely on the arrival time of the source’s previous packet), 
but the asymptotic bandwidth allocation doesn’t depend on 
the activity of the sources [4]. Sources would gain very 
little from shifting their activity to less congested paths or 
times (on timescales from roundtrips to days), because 
(W)FQ only considers instantaneous, local congestion. 

Of course, the original goal of FQ was to isolate users from 
each other. We are not implying this is never a worthwhile 
goal. Our aim is merely to highlight that isolation hides 
opportunities for valuable co-operation.  

Per flow granularity policing was first proposed in the 
same paper [4] and was followed by numerous bottleneck 
flow policing proposals [5,11]. From the start, Demers et al 

recognised that any host could increase its link share 
without bound by opening connections with multiple other 
endpoints, which swarming downloads have now made 
commonplace. Not only do these per-flow approaches 
constrain all flows too little, they also constrain collections 
of flow too much (§5). They proscribe reasonable transport 
designs where flows use the flexibility of the resource pool 
but they do nothing at run-time to prevent the set of a 
customer's flows overloading the resource pool [1]. 

4. POLICING CONGESTION  
A system will encourage optimal behaviour if all the costs 
each individual causes others to suffer are reflected back on 
that individual [6]. The challenge we set ourselves is to do 
this without unpredictable bills.  



We set the constraint that the customer pays a flat monthly 
fee to its ISP. This funds a constant rate, w, of congestion 
tokens filling a bucket (Fig 2)  – ISPs may give customers 
the choice between different values of w. Unlike with a 
classic token bucket, only congestion marked packets 
consume tokens. So tokens are not consumed based on the 
amount of traffic sent, but on the amount of congestion the 
traffic causes, which ensures the customer suffers the cost 
of its behaviour on others. If the policed customer 
generates flows i=1..N, each of throughput xi(t) over a path 
experiencing congestion pi(t), the bucket empties at a rate 

∑ pi(t)·xi(t), which we will call the congestion bit rate (a 
classical token bucket would consume tokens at rate 

∑ xi(t)). The depth β of the bucket allows the customer to 
cause bursts of congestion, allowing for fluctuations in 
network conditions, and in the customer's own needs. 

  

Fig. 2. A congestion policer can be implemented as a modified 

token bucket 

So long as the customer stays below its congestion 
allowance, the policer merely monitors the congestion bit 
rate passively. But whenever the congestion bit rate 
empties the bucket, the policer penalises the aggregate it 
monitors. The penalty can take different forms: packets 
may be delayed or dropped.  

We choose to make the policer's penalty signals 
indistinguishable from bandwidth congestion signals (but 
the shadow policer in Section 6.2 allows end-points to 
separately track and minimise the former). We wanted to 
show that the simplest possible policer was sufficient, but 
we don’t preclude the development of richer signalling. 
Dropping traffic keeps the congestion bit rate within the 
allowance and gives customers the strongest incentive to 
control their congestion bit rate themselves. The policer 
might transition smoothly from passive monitoring to 
actively penalising traffic. However, initial analysis 
suggests a smooth transition serves no purpose, though 
further research is required to confirm this.  

5. IMPACT OF THE POLICER  

5.1 Impact on the flows of the policed customer  

One of the key features of the congestion policer is that it 
doesn’t enforce a specific response to congestion per flow. 
Each flow is free to use any congestion response so long as 
all flows together don't cause the overall congestion bit rate 
of the customer to exceed the allowance given.   

To explain, let’s first imagine a policer configured to allow 
only an unrealistically low congestion bit-rate. Fig. 3 
illustrates the effect of such a policer on a single long-
running flow: either a TCP flow (congestion response: 

yTCP) or a constant bit-rate flow (congestion response: 
yCBR). If congestion increases enough, and the flow runs at 
a high enough rate for long enough, the sustained high 
congestion bit rate will empty the bucket. The policer will 
then override the congestion response of the flow so that 
the congestion bit rate equals the allowance (p.ypoliced(p)=w) 
which gives the shape of the congestion response imposed 
by the policer:   ypoliced(p)=w/p. 

The TCP flow has its own long-term congestion response, 
yTCP(p), which follows the well-know inverse square-root 
law [10] (for brevity we assume constant segment size & 
RTT).  If the customer's allowance is low enough, it crosses 
the policer's congestion response at pTCP. As long as 
p<pTCP, the policer has no effect and the throughput is 
given by the TCP congestion response. If p>pTCP for long 
enough the policer starts to limit throughput to ypoliced 

instead. Note that, even when the allowance is scaled down 
to police a single flow, the response curve of the policer is 
not the same as TCP's. This merely illustrates that TCP's 
response wasn't designed to fully reflect its economic 
externalities. 

The effect is even more significant for the unresponsive 
flow. Its throughput remains constant while p<pCBR. But if 
p>pCBR for long enough, the policer makes the flow follow 
the congestion response defined by ypoliced too. 

  
Fig. 3. If set harshly, the congestion policer would impose 

default congestion response ypoliced on single flows 

More realistically, the allowance would be much higher to 
allow multiple flows of customer traffic. In the special case 
where all flows exhibited the same congestion response and 
shared the same path, the scenario would be equivalent but 
linearly scaled: a policer with 100 times higher allowance 
would start limiting 100 sustained TCP flows over a path 
with congestion pTCP. 

More generally, given the policer treats all flows in bulk, 
the congestion bit rate of each flow has the potential to 
affect the throughput of all others. In order to see how this 
encourages more elastic flows to compensate for less 
elastic flows, we must first quantify the cross-flow 
interaction the policer introduces. 

The unpoliced congestion bit rate of a customer is 
v=Σpi·yi(pi), where yi is the congestion response of flow i's 
data rate. The policer starts to intervene if v>w for long 
enough. The penalty imposed to bring v back under w is the 
same on all packets. Thus the policer increases the apparent 
congestion level for all flows by the same amount π. 



Fig. 4a shows how the throughput of a responsive flow is 
reduced to xi = yi(pi + π), based on its congestion response.  
TCP flows in steady state have a congestion response 
proportional to 1/√p. So, for small values of π, linear 
approximation gives the flow’s throughput as:  

 xi = yi(pi + π) 

 ~ yi(pi ) + π·yi'(pi) = yi(pi )·(1 - π/(2pi ))  
The pi in the denominator shows that the congestion policer 
has the greatest effect on flows on the least congested 
paths. Customers aiming to maximise their total throughput 
thus have the incentive to take charge of congestion control 
across all their flows (esp. those on the most congested 
paths), to make the most of their congestion allowance.  
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Fig. 4. Effect of bulk policing on a responsive flow (a) and 

unresponsive flow (b) 

Using the same analysis, Fig. 4b illustrates how the policer 
forces unresponsive flows to respond to congestion, 
reducing throughput from yCBR,i to xi = yCBR,i ·(1- π). The 
congestion bit rate of the flow is reduced from the larger 
light grey area to the smaller dark grey area.  

If a customer has a mix of elastic and CBR traffic the 
policer allows the customer to let its CBR flows remain 
unresponsive through heavy congestion. At the same time  
it causes packet drops that force elastic flows to 
compensate. These extra drops should encourage evolution 
of host optimisation software (§6.2) that ensures elastic 
flows compensate in advance by reacting more strongly to 
congestion, as the customer's overall traffic approaches the 
policed allowance. Effectively, elastic transports don't have 
to be modified for the policer to make them self-sacrifice to 
CBR flows, but if they do, the customer is better off.  

5.2 Impact on cross traffic 

Each customer’s traffic clearly benefits if the congestion 
bit-rate of competing cross-traffic is limited. Indeed, every 
other customer benefits when sources of heavy congestion 
are pressured to shift to less congested bottlenecks and if 
they can be prevented from contributing excessive 
congestion, across one or several parallel bottlenecks.  

6. DISCUSSION 

6.1 Why per flow responsiveness is not enough    

Imagine customer A uses 98 shares of a bottleneck and 
customer B uses 2. If the bottleneck loses half its capacity, 
they can both halve their usage to prevent congestion. 
However, A still has 49 times more than B. A might have 
opened 98 TCPs while B opened only 2. Or A might keep 2 

TCPs active 49 times more often. Therefore prevalent per 
flow congestion responsiveness certainly prevents 
congestion collapse. But it is a fallacy that it also controls 
fair sharing of resources, particularly given it ignores 
sharing over time.  

However, our congestion policer shows the reverse 
approach is fruitful. Ensuring fair shares of everyone's 
overall congestion contribution does also ensure per flow 
congestion responsiveness – both voluntarily and 
ultimately by enforced intervention (§5). 

6.2 Endpoint evolution driven by congestion policing   

Policing a customers’ overall congestion is designed to 
make their own congestion control evolve beneficially. If 
the policing is triggered by the customer's overall 
behaviour, it doesn’t discriminate between flows. So any 
valuable flows over uncongested paths will be 
unnecessarily throttled. Endpoint developers will be driven 
by demanding users to create software to maximise the 
value they get out of the network under such a constraint. It 
is likely strategies will be found that minimise user 
intervention, so they can spread to the mass market. 

For instance users' transports should gradually evolve to 
use a weighted congestion control [13] where high-priority 
foreground traffic is given a greater weight than low 
priority background traffic. We envisage application logic 
would set each flow’s weight. Then the operating system 
might recalibrate these weights dependent on the run-time 
level of the shadow policer. 

w

v*
w - v*

foreground

background

w

 

Fig. 5. A dual ‘shadow’ policer assists endpoints that 

can distinguish foreground and background traffic  

Such software that can discriminate between foreground 
and background flows could further protect foreground 
traffic by using the dual ‘shadow’ policer shown in Fig. 5. 
Foreground traffic is unconstrained by this policer but its 
congestion bit rate v* is monitored (as long as it remains 
within the overall allowance). Meanwhile, background 
traffic is more severely constrained by another congestion 
policer, against the surplus allowance w-v* unused by 
foreground traffic.  

This example shows that minimal constraints imposed at 
customer attachment points are sufficient to replace any 
deep packet inspection the ISP might otherwise impose.  

6.3 Choice of Bucket Depth 

The bucket depth gives the extent to which sporadic 
customers can 'roll over' the congestion allowance gained 
during idle periods. It also defines the maximum 
congestion burst a customer may cause over the network.  

(a) (b) 



Congestion would be more predictably smooth if everyone 
were limited to smaller bucket depths, but this would 
reduce flexibility to make urgent demands on the network. 
Further research is planned to formalise this trade-off. 

6.4 Policing upstream or downstream?   

The same token bucket-based contract could be used to 
either police a customer's upstream (outgoing) traffic as in 
Fig. 1, downstream (incoming) traffic - or both. However, 
the choice has profound architectural implications. 

A strong argument can be made for policing upstream 
traffic, so that it can be limited before it does any damage. 
Also, at the network layer, the sender is ultimately 
responsible for sending excess traffic into the network. 
Certainly the receiver may have originally requested the 
connection (and blame might be traced back further), but 
that is all strictly above the scope of the packet forwarding 
layer that a policer protects. However, the policer we have 
described relies on counting congestion markings in the 
packets it handles, and at the ingress they haven't yet 
traversed any congestion. The re-ECN protocol [2], which 
forces the sender to mark expected congestion into packets, 
is a proposed solution to this problem.  

On the other hand, ECN already makes it straightforward 
for the policer to count congestion information arriving in 
downstream traffic. Discarding downstream traffic doesn't 
necessarily stop the sender continuing to cause congestion, 
but it does stop the receiver getting the data. In most cases, 
except deliberate malice, the receiver's feedback loop 
would have the desired effect of slowing the sender to the 
policed rate. However, any sender could run down the 
receiver's token bucket with unsolicited traffic, so policing 
downstream traffic would open a new DoS vulnerability. 

We need to make it clear that, if network A deploys the 
policer we have proposed at its customer's attachment 
point, it doesn't only police congestion experienced in 
network A. It is intended to count congestion experienced 
all along the path in other networks. Nonetheless, at the 
start of incremental deployment, a network gains from 
having policers deployed for both traffic directions. 

7. CONCLUSION 
We lack principled ways for ISPs to prevent customers 
over-using a 'cloud' service like the Internet. ISPs often use 
ad hoc techniques (such as rate and volume-based 
conditioning contracts) to isolate users from the adverse 
effects of others. But users' software then lacks adequate 
signals and incentives to shift traffic around the resource 
pool - to less congested links or times. As fast as advances 
in resource pooling are being invented, these over-
restrictive ad hoc controls are undermining them.  

We propose a general purpose traffic conditioning contract 
that is more appropriate for a cloud service than these rate 
and volume-based alternatives. It can be implemented by a 
simple token bucket at the customer's attachment point, 
which limits the customer's total contribution to congestion 
anywhere in the resource pool.  

Without imposing any particular behaviour on individual 
flows, this policer encourages flows to move to less 
congested paths and to respond to congestion on their own 
path. If they don't, it protects the freedoms of others using 
the resource pool by forcing a response across all flows. 
But the imposed response will always be worse than the 
customer's own software taking charge of each flow's 
separate response. This approach empowers users to take 
charge of their aggregate usage of the resource pool. 
Congestion rationing is the trade-off they are submitted to 
in exchange for greater flexibility to take control decisions.  

The entrenched tradition of restricting everyone's access 
bit-rate unnecessarily prevents much higher bit-rates, while 
the current alternative of imposing a response on each flow 
certainly prevents congestion collapse but it cannot control 
resource sharing as claimed and it restricts evolution of 
new transport behaviours.  

We believe the architectural agenda should shift from 
improving per-flow controls to improving information flow 
in packet headers. We ask what information would make 
packets sufficiently self-contained to be held accountable 
for the congestion they contribute to. We have shown that 
ECN may be sufficient, but open questions remain 
concerning whether resource accountability also requires 
prevailing loss to be revealed in packet headers, and 
whether rest-of-path congestion is needed.  
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