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1 Moving Average or Running Mean

An algorithm for taking the moving average of the last j samples:
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The gain of the running mean varies with frequencies in the samples. The frequency response is a sinc
function'. The EWMA however has constant gain with frequency.

2 Exponentially Weighted Moving Average

Given a series of samples: x1, %o, ...%;,. ..z, with x,, most recent, their discrete EWMA:
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where higher § (or smaller time constant 1/3) weights recent samples more strongly (8 > 0).

Taking 0 =e™# (0 <6 < 1), gives
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The time constant 1/8 = —1/Inf. The time constant of an EWMA can be thought of as how fast
the EWMA responds to a step change in the inputs from one instant to another. It is the number of
iterations needed to change the moving average by 1 — 1/e & 63% of the step.

2.1 Iterative EWMA Algorithm

An iterative algorithm for this EWMA is
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Comparing with Eqn 2
n—1
Xo=01-0)[> 07|z
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As n — oo, the Taylor series expansion of 1/(1 — ) is 32" 67, therefore,

X, — Tn.

2.2 Event-Based EWMA Algorithm

If samples do not arrive evenly, the above can be modified to an event-based EWMA. For instance, if
the average is desired to move with time, then time can be slotted. Instead of updating the algorithm
every time-slot, when a sample arrives n time-slots since the last sample, the EWMA can catch up by
emulating n iterations of Eqn 3. If a new sample z,,11 arrives, the EWMA for the previous time slot z,,
can be calculated assuming that x, = x,_1 = x,_2 = ... = x1 where x; was the previous sample and
the EWMA prior to that was Zy. From Eqn 3:
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2.3 EWMA Implementation

Alternative formulations of Eqns 3 and 5 with a = (1 —6) (0 < a < 1) are:

Tp < axy + (1 — )Tp_1
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Eqgn 6 can be implemented on a binary machine with two adds and a shift if « is chosen to be a negative
integer power of 2. Eqn 7 is not so easy to implement efficiently. However, if the arrival process of
samples is Poisson, there is no need to make allowances for variations in the inter-arrivals of samples,
which is the so-called PASTA property [Wol82].
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