fixing Internet DDoS & net neutral QoS using one more bit and economic policy

Bob Briscoe Chief Researcher, BT Group Nov 2006

"the big problem with the Internet"

- cannot control anti-social behaviour
 - at the network level \rightarrow cannot manage congestion fairly
 - 'cannot' is strictly true congestion information in wrong places

flow

flow

- network reliant on voluntary politeness of all computers
- a game of chicken taking all and holding your ground pays

a long standing architectural vacuum resource allocation / accountability / fairness

- on 'to do' list since the Internet's early days
- isn't enforcing 'TCP-fairness' the answer? No
 - anyone can create more TCP-friendly flows than anyone else
 - for much longer than anyone else (p2p file-sharing)
 - and embedding only TCP congestion control into Internet would kill evolution (VoIP)
- the community problem has been this deeply embedded dogma
 - "equal flow rates are fair" has no basis in real life, social science or philosophy
 - obscured by this idea, community can't tell a bad fix from a good one
 - and doesn't even realise fairness is completely out of control
- correct measure of fairness is volume of congestion ('cost') not flow rate
 - proof of correctness based on global utility maximisation (Kelly97 in [1])
 - answers questions like "how many flows are fair?" "for how long?"
 - rejected at the time required congestion pricing to discourage anti-social behaviour
- this talk: users can have flat pricing and fairly allocate resources

^[1] Briscoe "Flow rate fairness: Dismantling a religion" (Oct 2006) <<u>http://www.cs.ucl.ac.uk/staff/B.Briscoe/pubs.html#rateFairDis</u>>

freedom vs fairness resolving the net neutrality debate

freedom to be anti-social - demand side

- the Internet is all about the freedom to get what I want (within my line rate)
- limited by how much I impinge on the freedom of others
 - congestion

freedom within fairness

- differentiated quality of service
- you'll get what you ask for (within the prevailing fairness policy)
- you'll get what we infer you want from what you're doing

freedom to be anti-competitive – supply side

is this important?

- working with packets depersonalises it
 - it's about conflicts between real people
 - it's about conflicts between real businesses
- 1st order fairness average over time
 - 24x7 file-sharing vs interactive usage
- 2nd order fairness instantaneous shares
 - unresponsive video streaming vs TCP
 - fair burden of preventing congestion collapse
- not some theoretical debate about tiny differences
 - huge differences in congestion caused by users on same contract
 - hugely different from the shares government or market would allocate
 - yes, there's a lot of slack capacity, but not that much and not for ever
- allocations badly off what a market would allocate
 - eventually lead to serious underinvestment in capacity
- 'do nothing' will not keep the Internet pure
 - without an architectural solution, we get more and more middlebox kludges

designed for tussle

- current Internet gives freedom but no fairness
 - the more you take, the more you get; the more polite you are, the less you get
 - but we don't want to lose freedom by enforcing fairness

solution: allow ISPs to enforce user-specific congestion control fairness

liberal acceptable use policies

• open access, no restrictions

- middle ground
 - might want to cap congestion caused per user (e.g. 24x7 heavy p2p sources, DDoS)
 - evolution of different congestion control (e.g. hi-dynamics; rate adaptive VoIP, video)
- concervative accentable use nolicies

exec summary

- will range widely across religion, economics, architecture & bits
- freedom vs. fairness
- solution
 - congestion re-feedback engineered for IP (re-ECN)
- expected effect a step to trigger evolutionary change
 - on Internet applications aggressive behaviour proportionately throttled
 - on network interconnection market usage charging based on congestion
 - on distributed denial of service attacks natural extreme throttling
- strong deployment incentives
- unless there's interest, I won't cover:
 - protocol & algorithm detail
 - potential routing benefits
 - microeconomics of welfare maximisation
 - how to do fairness between fairnesses within sub-groups
 - NATO, commercial ISPs, universities, countries with social objectives

11. religious						
10. political						
9. legal						
8. commercial						
7. application						
4. transport						
3. network						
2. link						
1. physical						

solution: congestion re-feedback (re-inserted feedback) status

- culmination of over a decade of research (mainly Cam, BT, M\$, UCL +)
 - addition of information missing from packet essential to network economics
 - even if our specific protocol (re-ECN) has flaws, it will be worth finding another
- progressing through IETF long haul requires change to IP
 - fully spec'd protocol last week: 4th presentation since Sep 05
 - also great progress dismantling the prevailing fairness religion (IETF and wider)
- intellectual property rights
 - originally recognised by BT as key patent
 - agreed to freely license aspects essential to IETF standardisation
- working to get on roadmaps for
 - NGN interconnection; IETF pre-congestion notification (PCN) w-g; 3GPP
- support / interest
 - BT's wholesale & retail divisions & CTO, big 5 network operators (senior level)
 - broadband, interconnection & net neutrality w-gs of MIT comms futures programme (FT, BT, DT/T-Mobile, Cisco, Comcast, Intel, Motorola, Nokia, Nortel, MIT, Cam, +)

a change to IP needs to be 'owned' by Internet community please take it, break it, analyse it, re-design it

measurable incipient congestion

packet drop rate is a measure of congestion

solution step #1

- but how does network at receiver measure holes? how big? how many?
- can't presume network operator allowed any deeper into packet than its own header
- not in other networks' (or endpoints') interest to report dropped packets.
- solution: Explicit Congestion Notification (ECN)
 - mark packets as congestion *approaches* to avoid drop
 - already standardised into IP (2001)
 - implemented by all router vendors very lightweight mechanism
 - but rarely turned on by operators (yet) mexican stand-off with OS vendors

packet headers network transport data

measurable downstream congestion solution step #2

congestion cap auto-adjusts volume cap always a hard compromise

- won't sender or receiver simply understate congestion?
- no drop enough traffic to make fraction of red = black
- goodput best if rcvr & sender honest about feedback & re-feedback

inter-domain accountability for congestion

- metric for inter-domain SLAs or usage charges
 - N_B applies penalty to N_A in proportion to bulk volume of black less bulk volume of red over, say, a month
 - could be tiered penalties, directly proportionate usage charge, etc.
 - flows de-aggregate precisely to responsible networks
 - N_A deploys policer to prevent S_1 causing more cost than revenue

congestion competition - inter-domain routing

- if congestion \rightarrow profit for a network, why not fake it?
 - upstream networks will route round more highly congested paths
 - N_A can see relative costs of paths to R_1 thru $N_B \& N_C$
- the issue of monopoly paths
 - incentivise new provision

incentive framework

grounded in economic theory not just arbitrary bit twiddling

demand side

- applying a price to congestion causes users to maximise Internet-wide utility [Kelly97]
 - reasonable assumptions: concave utility; competitive market with price taking users
- but without re-feedback, had to congestion charge and had to charge receiver
- with re-feedback can keep traditional flat fee
 - use engineered mechanism (policer) not pricing
 - limit the cost of congestion the sender can cause to the flat fee she paid
- accountability without usage charging

supply side

٠

- incipient congestion stats drive provisioning
 - congestion marking represents real (paid for) demand
 - volume of congestion marking at each resource proportional to investment that resource needs
- network knowledge of downstream congestion hugely simplifies control & mgmt

fixes market failures

- balances information asymmetry between endpoints and network
- congestion externality internalised by those that cause congestion
 - and those that allow it to be caused

differential quality of service (QoS) control without all the complicated stuff

- QoS only relevant when there's a risk of congestion
- enforcing congestion control is equivalent to QoS
 - allowing one app's rate to slow down less than others in response to incipient congestion (ie. still low delay)
 - is equivalent to giving scheduling priority on routers*
- even if user pays a flat monthly fee
 - better QoS for some apps leaves less congestion 'quota' for rest
- making users accountable for not slowing down as much as others during congestion
 - is a sufficient mechanism both for QoS and for 'paying' for QoS
- incredible simplification of mechanisms for QoS control & mgmt
 - and, unlike other QoS mechanisms
 - it also prevents users 'stealing' QoS at everyone else's expense

^{*} except within a round trip time – implies two priority classes would be sufficient (can also determine relative congestion marking rates of each class using economics)

deployment incentives bootstrap then chain reaction

- deployment effectively involves architectural change
 - 1. (minor) change to sender's Internet stack
 - 2. network deploys edge/border incentive functions
 - breaking the stand-off between 1 & 2 requires strong incentives
- re-feedback solves ISPs' main cost control problem
 - third party services competing with ISP pay below network cost
 - ISP has to compete *while* paying balance of competitor's costs
 - hits big fear button and big greed button
 - but keeps moral high ground
 - net neutral: managing congestion not app discrimination
- first movers: vertically integrated cellular operators?
 - 3GPP devices leak deployment to other networks by roaming
- 2nd movers (NGNs?) continue chain reaction
 - adopters' incoming border charges focus on non-adopters

other steps to deploy re-feedback

- customer contracts
 - include congestion limit
- oh, and first we have to update the IP standard
 - started process in Autumn 2005
 - using last available bit in the IPv4 packet header

IETF internet draft roadmap

extended ECN codepoints: summary

extra semantics backward compatible with previous ECN codepoint semantics

ECN code- point	ECN [<u>RFC3168]</u> codepoint	RE flag	Extended ECN codepoint	re-ECN meaning	`worth'
00	not-ECT	0	Not-RECT	Not re-ECN capable transport	
		1	FNE	Feedback not established	+1
01	ECT(1)	0	Re-Echo	Re-echo congestion event	+1
		1	RECT	Re-ECN capable transport	0
10	ECT(0)	0		'Legacy' ECN use	
		1	CU	Currently unused	
11	CE	0	CE(0)	Congestion experienced with Re-Echo	/////9/
		1	CE(-1)	Congestion experienced	-1

flow bootstrap

- green packet(s) at start of flow
 - 'worth' +1 same as black
 - credit for safety due to lack of feedback
 - a deposit
- after idle >1sec next packet MUST be green
 - enables deterministic flow state mgmt (policers, droppers, firewalls, servers)

- green also serves as state setup bit [Clark, Handley & Greenhalgh]
 - protocol-independent identification of flow state set-up
 - for servers, firewalls, tag switching, etc
 - don't create state if not set
 - may drop packet if not set but matching state not found
 - firewalls can permit protocol evolution without knowing semantics
 - some validation of encrypted traffic, independent of transport
 - can limit outgoing rate of state setup
- to be precise green is 'idempotent soft-state set-up codepoint'

per-user congestion policer

interactive short flows (e.g. Web, IM)

animation requires Office XP or equivalent

outstanding issues

- technical
 - * a lot more verification of all the claims to do
 - community found a few nasty vulnerabilities over last year
 - ✓ fixed (added minor complexity in only one case)
 - connection spoofing attack still outstanding
 - ✓ possible solution recently brainstormed
- religious
 - underlying problem has been dogma that equal flow rates are fair
 - ✓ groundswell change in community thinking since mid Oct'06
 - dismantling a religion not so easy people fall into their old ways
- community
 - * a lot of passive support, but consensus needs a lot more active interest

conclusions

- resolution of tensions in net neutrality debate
 - freedom to use the Internet, until you congest freedom of others
 - proportionate restriction of freedom during congestion
- an architectural change with grand implications
 - simple management and control of QoS
 - naturally mitigates DDoS
 - generates correct capacity investment incentives and signals
- but conceptually simple and trivial to implement
- strong deployment incentives
 - bootstrap and onward chain reaction
- where's the catch?
 - invite you to analyse it, break it, re-design it

Q&A and more info...

- Fixing the broken mindset (polemical)
 - Flow Rate Fairness: Dismantling a Religion IETF Internet draft (Oct 2006)
- Overall intention
 - <u>Policing Congestion Response in an Inter-Network Using Re-Feedback</u> (SIGCOMM'05 – mechanism outdated)
- Mechanisms and rationale
 - <u>Re-ECN: Adding Accountability for Causing Congestion to TCP/IP</u> IETF Internet Draft (Oct 2006)
- Effect on DDoS
 - <u>Using Self-interest to Prevent Malice; Fixing the Denial of Service Flaw of the Internet</u> Workshop on the Economics of Securing the Information Infrastructure (Oct 2006)
- more papers referenced in the above
- Bob Briscoe
 <<u>http://www.cs.ucl.ac.uk/staff/B.Briscoe/></u>

