Workshop on Reducing Internet Latency goals for taxonomy session

- survey sources of latency
- categorise solutions
 - quantify benefits
 - consider deployment aspects
 - short-term & long-term applicability
- common reference framework for discussions
- schedule
 - [10-15] Joe Touch, ISI
 Factors underlying the problem space
 - [10-15] Bob Briscoe, BT
 Solution space systems focus
 - [10-15] Lucien Avramov, Cisco

Solution space – intra-box focus

- [10-15] open to contributions from the floor
- [50-30] discussion

REDUCING INTERNET TRANSPORT LATENCY

survey of latency reducing techniques and their merits a work in progress

Bob Briscoe, Anna Brunstrom, Gorry Fairhurst, Stein Gjessing, David Hayes, Andreas Petlund, David Ros, Ing-Jyh Tsang

goal for this talk

- industry roadmap of techniques
- gain vs pain
 - latency reduction against deployability
- "A Survey of Latency Reducing Techniques and their Merits"
 - ~190 references
 - a work in progress
 - available soon via http://riteproject.eu/publications/
- evolved from BT roadmap work, but repurposed
 - a company tries to prioritise the quick wins
 - an industry also needs to identify hard problems being avoided

latency-reducing techniques

organised by sources of delay

3.1 Structural delays

- 3.1.1 Server placement
- 3.1.2 Sub-optimal route latency
- 3.1.3 Name resolution
- 3.1.4 Content placement

3.2 Interaction between endpoints

- 3.2.1 Protocol Initialisation
- 3.2.2 Secure session initialisation

3.2.3 Packet loss recovery delays:

3.3 Reducing delays along transmission paths

3.3.1 Propagation delay

3.3.2 Switching/routing delay3.3.3 Queueing delay

3.3.4 Error correction delays

3.4 Reducing delays related to link capacities

- 3.4.1 Insufficient capacity
- 3.4.2 Redundant information
- 3.4.3 Under-utilised capacity

3.4.4 Collateral damage3.4.4 Medium acquisition delays

3.5 Intra-end-host delays

- 3.5.1 Transport Protocol Stack buffering
- 3.5.2 Operating system delay

latency-reducing techniques

organised by sources of delay

3.1 Structural delays

- 3.1.1 Server placement
- 3.1.2 Sub-optimal route latency
- 3.1.3 Name resolution
 - 3.1.3.1 DNS cache placement
 - 3.1.3.2 DNS cache pre-fetching
- 3.1.4 Content placement
 - 3.1.4.1 Proxies and caches
 - 3.1.4.2 Prediction and latency hiding

3.2 Interaction between endpoints

3.2.1 Protocol Initialisation

- 3.2.1.1 TCP fast open
- 3.2.1.2 Pipelining
- 3.2.2 Secure session initialisation
 - 3.2.2.1 Transport layer security negotiation
 - 3.2.2.2 Building encryption into TCP
 - 3.2.2.3 Bootstrapping security from the DNS

3.2.3 Packet loss recovery delays:

- 3.2.3.1 Application tolerance to errors and order of delivery
- 3.2.3.2 Reduce error detection time
- 3.2.3.3 Add redundancy

3.3 Reducing delays along transmission paths

- 3.3.1 Propagation delay

 3.3.1.1 Straighter cable paths
 3.3.1.2 Higher signal velocity
 3.3.1.3 Combining higher signal velocity and straighter routes

 3.3.2 Switching/routing delay

 3.3.3 Queueing delay
 3.3.3.1 Flow and circuit provisioning
 3.3.2 Packet scheduling
 3.3.3 Traffic shaping and policing
 3.3.4 Small buffers
 3.3.5 Queue management
 3.3.6 Transport-based queue control

 3.3.4 Error correction delays

 3.3.4.1 Improve channel guality
 - 3.3.4.2 Hop based error correction and packet ordering

3.4 Reducing delays related to link capacities

- 3.4.1 Insufficient capacity
- 3.4.2 Redundant information
- 3.4.3 Under-utilised capacity
 - 3.4.3.1 More aggressive congestion control
 - 3.4.3.3 Rapidly sensing available capacity
- 3.4.4 Collateral damage
- 3.4.4 Medium acquisition delays

3.5 Intra-end-host delays

- 3.5.1 Transport Protocol Stack buffering
- 3.5.2 Operating system delay

Transaction Layer Security (TLS) aka secure sockets layer (SSL) or https

TLS adds: 2 RTTs False Start cuts this to: 1 RTT

TLS with TCP handshake: 3 RTTs

TLS with TCP Fast Open: 1 RTT

REDUCING INTERNET TRANSPORT LATENCY

a figure of merit: average rate

Bob Briscoe, BT

Anna Brunstrom, Mohammad Rajiullah, Karlstad University

Olga Bondarenko, Simula Research Labs

inaccessible capacity in a dedicated access link

size

CDF w.r.t Fraction of Bytes

Fig. 2: Prob. of fraction of total bytes transferred for a given flow size