Low Latency Low Loss Scalable Throughput
(L4S)

TCP Prague Status pt2
draft-ietf-tsvwg-ecn-l4s-id

Bob Briscoe, Independent <ietf@bobbriscoe.net> &5
about the work of people too numerous to list

TSVWG, IETF-106, Nov 2019

The 'Prague L4S requirements’

« for scalable congestion ctrls over Internet

* Assuming only partial deployment of either FQ or Requirements
bualQ Coupled AQM isolation for L4S L4S-ECN Packet Identification: ECT(1)

e Jul 2015 Prague IETF,
ad hoc meeting of ~30 DCTCP folks Accurate ECN TCP feedback

- categorized as safety (mandatory) Reno-friendly on loss
or performance (optional)

* not just for TCP
* behaviour for any wire protocol (TCP, QUIC, RTP, etc)

* evolved into draft IETF conditions for setting _ __ _
ECT(1)inIP Detecting loss in units of time

Reno-friendly if Classic ECN bottleneck
Reduce RTT dependence
Scale down to fractional window

« draft-ietf-tsvwg-ecn-l4s-id Optimizations
ECN-capable TCP control packets
Faster flow start

Issue #16:
RFC3168 ECN AQM in a single Q

DCTCP Pl, mean, P99 I ECN-Cubic PIl, mean, P99 1IN

o- PRAQM

i
o1 |1 H Hiil *H“ hi” tHHH

Normalised rate per flow

0.01
DA AL AT A A D
ooy, T Cllg ~ oy = ooy = ooy
RTT [m S] . [7~ [o~ [

Link[Mbps]: 4

Issue #16:
Fall-back to Reno-Friendly on Classic ECN bottleneck

Not necessary for ever
 until RFC3168 ECN superseded (or L4S experiment ends)

Published Design as a Discussion Paper
e TCP Prague Fall-back on Detection of a Classic ECN AQM

classic

_ _ _ transition
Rationale for metrics, pseudocode & analysis | -

_ _ _ _ scalable
Detection algorithms — drive a classic ECN AQM score >

» Passive detection algorithm — primarily based on delay variation C|aSSIC_eCI’1
* Active detection technique (if passive raises suspicion)
* Technique to filter out route-changes (prob. unnecessary)

Gradual behaviour change-over from scalable to classic
* e.g. TCP Prague becomes Reno
* detection unlikely to be perfect

https://arxiv.org/abs/1911.00710

Issue #16:
Fall-back to Reno-Friendly on Classic ECN bottleneck

* Passive detection algorithm
» delayed start following first CE mark

* 3 weighted elements to detect classic queue
— mean deviation of the RTT (mdev in TCP)
- mean Q depth (solely positive factor — min RTT unreliable)
- degree of self-limiting (app-limited, rwnd-limited) (solely negative factor)

* Implemented

* Evaluation will follow testbed rebuild
« verifying testbed documentation is sufficient for a newbie

Issue #16:
Fall-back to Reno-Friendly on Classic ECN bottleneck

* Active detection technique
— If passive raises suspicion,
» send three overlapping sub-MSS tracer packets
 forces quick-ACKs
— If last two reordered, likely L4S
* reduce suspicion, and continue

,,,,,,,,
-
R
[y o 3
......
e *
o
o
o
"

.'/
o
."'
-
-
R
."F.
o
R
-
-
."’
t

-
e
-

rear ECT1 middle ECTO front ECT1|»

Route-change filtering

N

6

RTT

srit[0]
.......... srtt[0] £ 2*mdev([0]
srit[1]
srtt[1] £ 2*mdev[1]

X .
A -
-
s Tt o at -
12 7T e T Ny
., 1

e If outlier .

e create alt mdev

SAPRP DL RPRPE R

ackno

* unlikely to be necessary
* mis-measurement too brief to affect passive detection algo

Reg#1. Scalable Congestion Signalling

.. o . v : number of congestion signals per round trip
 congestion signalling is scalable if v>v, (1) W: congestion window

where v, 1s a reasonable min p: dropping or marking probability

* v = (segments per RTT, W) * (probability each will be marked, p)
v=Wp
substitute in scalability constraint (1)
W>v,/p (2)

* can easily derive constraint on steady-state TCP equations from this...

General congestion control formula: , B
* To satisfy (2), B> 1 Reno)
Cubic 7

DCTCP (prob. AQM) 1
DCTCP (step AQM) 2

Req#2: Limited RTT-dependence

* We have lived with this. Why change?
 Bufferbloat has cushioned us from the impact of RTT-dependent CC

 Low queuing delay E.g: base RTT ratio R, /R, = 200/2 = 100
leads large RTT :
q (R,+q)/(R,+q)
Drop tail 200 ms (200+200) =2
|
Note: this is an anti-starvation 2l
requirement not a strong PIE AQM 15 ms (200+15) =13
'fairness' requirement (2+15)
L4S AQM 500 us (200+0.5) =80
(2+0.5)

Tension between Reqs 1 & 2

 Scalable congestion signalling pW=v,
* Limited RTT-dependence (pW/R const) pW oc R

v : number of congestion signals per round trip
W: congestion window

p: dopping or marking probability

R: Total Round trip time

“Compromise 5’ betw Reqgs 1 & 2

1000

* signals per RTT 100
PW =1

scalable signalling 0.1
AN D 100,000,000

>>R, RTT-independent 10,000,000
<<R, not RTT-dependent

—_
o

/R+1)

1

W/u [mark/RTT]

' 1,000,000

* flow rate
pW __ Vo

100,000

r/u [mark/ S

10,000

R - ng(RO/R+1) 1,000
sorry for confusing you all: p = 1/u v

more Info

* Resolving Tensions between Congestion Control Scaling
Requirements, Bob Briscoe (Simula) and Koen De
Schepper (Nokia Bell Labs), Simula Technical Report
TR-CS-2016-001; arXiv:1904.07605 [cs.NI] (Jul 2017)

Status against Prague L4S requirements (Jul'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague

L4S-ECN Packet Identification: ECT(1) _—

Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck _
Reduce RTT dependence simulated

Scale down to fractional window thesis write-up thesis write-up thesis write-up
Detecting loss in units of time _— mandatory?
Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress

Status against Prague L4S requirements (Nov'19)
Linux code: - none (simulated) research private research opened RFC _

Requirements base TCP DCTCP TCP Prague
L4S-ECN Packet Identification: ECT(1) _—
Accurate ECN TCP feedback sysctl option mandatory
Reno-friendly on loss _—
Reno-friendly if classic ECN bottleneck evaluat'n in progress
Reduce RTT dependence research code
Scale down to fractional window research code research code research code

Detecting loss in units of time _— mandatory?

Optimizations

ECN-capable TCP control packets module option off on default off - on later
Faster flow start in progress

Faster than additive increase in progress

Scale down to fractional window

* Designed, implemented (Linux base stack)
and evaluated (Reno & TCP Prague)
« works smoothly — complex design process, simple code
* Research prototype
* Not yet tested with other TCP Prague components

* Masters thesis of Asad Ahmed and open source code
 link from L4S landing page

* Booked session to present in iccrg at IETF-107
* brief preview in TCP Prague side meeting on Thu 08:30 (see next)

Low Latency Low Loss Scalable Throughput
(L4S)

Q&A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

