
1© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.

Bob Briscoe, Independent <ietf@bobbriscoe.net>
Koen De Schepper, N okia Bell Labs <koen.de_schepper@nokia.com>
Olivier Tilmans, N okia Bell Labs <olivier.tilmans@nokia-bell-labs.com>
Asad Sajjad Ahmed, Independent <me@asadsa.com>
Joakim Misund, Uni Oslo <joakim.misund@gmail.com>

iccrg, IETF-109, Nov 2020

TCP Prague
a prototype for L4S Congestion Control

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.2

Invitation to collaborate
● In all the early work on L4S, DCTCP in v3.19 Linux gave ultra-low delay
● For 3 years L4S team was focused on AQM products (& CC safety aspects)

● while, with later kernels, DCTCP was no longer performing
● Prague git repo now tracks the current kernel – with performance restored

● Updating involved tracing interrelated problems between the kernel and
the DCTCP module

● Time for a relaunch
● TCP Prague & AccECN codebase now usable for others to build on
● Deployments of network part pending codepoint assignment

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.3

Brief DCTCP tutorial

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.4

Smoothing Congestion Signals
● Classic AQMs filter out queue fluctuations to avoid unnecessary drops
● DCTCP uses ECN so it can shift responsibility for smoothing from AQM to sender
● Smoothing adds the following feedback delay:

Bottleneck AQM Sender CC

Classic 100 to 200 ms
(worst-case RTT)

0

L4S 0 0 to RTT timescale
(each flow’s own RTT)

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.5

Smoothing Congestion Signals
● Classic AQMs filter out queue fluctuations to avoid unnecessary drops
● DCTCP uses ECN so it can shift responsibility for smoothing from AQM to sender
● Smoothing adds the following feedback delay:

Bottleneck AQM Sender CC

Classic 100 to 200 ms
(worst-case RTT)

0

L4S 0 0 to RTT timescale
(each flow’s own RTT)

if (inst_qDelay > threshold)
ECN-mark;

can choose not to smooth,
e.g. during flow start

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.6

● Congestion window reduction depends on extent of congestion
● not just existence

● Maintain fraction (F) of marked pkts, then EWMA (α) of F

Each RTT:

• Congestion window (W) reduction: αW/2

• Compared to Reno: W/2

 α ← gF + (1-g)α
where g is gain [1 /16]

DCTCP Sender: Differences from Reno

F=
no . of marked ACKs

total no . of ACKs

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.7

Headroom for short flows
● Short flows (and bursts) are effectively unresponsive
● The classic approach (incl. BBR) is for short flows to burst into the buffer
● Long-running DCTCP senders leave headroom for the recent level of short

flows and bursts
● which they learn by maintaining an EWMA α of ECN feedback

● An ongoing trend of short flows fits in the headroom below the Q threshold
● but occasional short flows can still queue above the threshold

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.8

Prague Developments

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.9

TCP Prague Linux Reference Code: Status (Nov'20)

Requirements base TCP TCP Prague
L4S-ECN Packet Identification: ECT(1) mandatory

Accurate ECN TCP feedback sysctl option mandatory

Reno-friendly on loss inherent

Reno-friendly if classic ECN bottleneck default off → on later

Reduce RTT dependence (low RTT dominance) default on

Scale down to fractional window research git research git

Detecting loss in units of time default RACK default RACK

Performance Improvements
ECN-capable TCP control packets module option off default off→on later

Faster flow start research git research git

Faster than additive increase in progress

Continuous additive increase default on

Reduce RTT dependence (high RTT weakness) Todo

Burst avoidance for TSO sizing & pacing (<1ms) default

Performance-bug fixes
integer scaling & fractional carry (alpha, cwnd, etc) fixed

PRR undershoot spike fixed

Linux code: none none (simulated) research private research opened L4Steam git Linux RFC Linux mainline

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.10

● DCTCP on a STEP AQM ● Prague on a STEP AQM

Prague Benefits today

Adapted pacing / TSO and bug-fixed integer-roundings / PRR / partial-AI

Current DCTCP badly degraded

100Mbps 20ms

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.11

Smoother steady state additive increase
● With marks expected in every RTT, no time for additive increase

● Like Classic TCPs, DCTCP suppresses AI in the RTT after MD
● Unnecessary variation, to force periods with no marking and more marking
● Worse RTT dependence, as longer RTTs can’t increase

● Prague increases on every ACK except on echoed ECN marks

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.12

● Prague on a STEP AQM● ECN-Cubic on a CoDel AQM

Prague Benefits today

Smoother Throughput, smaller Queue

Research in progress

100Mbps 40ms

Research in progress

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.13

● Cubic on a CoDel AQM ● Prague on a STEP AQM

Prague Benefits today

Better RTT-independent fairness

400Mbps 0.5, 1, 10, 30ms

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.14

Invitation to collaborate

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.15

Research opportunities
● Congestion control exploiting high fidelity ECN markings

● relevant beyond L4S

● Possible topics to work on:
– As L4S moves from testbed to Internet
– Both Pragmatic deployment facilitators and longer term research

● Single-ended TCP deployment
● Integration with BBR/Cubic instead of Reno
● Improved flow startup
● Faster tacking of available capacity, e.g. over 5G mmWave links
● Improved detection of RFC 3168 marking behaviour

– Distinguishing FIFO from FQ

● Burstiness introduced by network (multiple access)

● What would a relaunch need to look like, for you to want to get involved?

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.16

Evaluation and reproducibility
● Reference test-cases

● RFC7928; draft-ietf-rmcat-eval-criteria ?

● Common metrics
● Comparable visualizations
● Reusable tools

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.17

How to Get Started
● L4S landing page

● https://riteproject.eu/dctth/
● TCP Prague mailing list

● https://www.ietf.org/mailman/listinfo/tcpprague
● Open source code from L4S team

● Linux kernel code, testbed scripts and GUI visualizer, Prague virtual machine, …
● https://github.com/L4Steam
● https://l4steam.github.io/

● Pete Heist’s L4S evaluation testbed scripts
● https://github.com/heistp/l4s-tests and others
● NYU Wireless fork for CloudLab-based deployment (https://github.com/ffund/sce-l4s-bakeoff)

● ns-3 simulation models (some in mainline, some out-of-tree)
● Prague, AccECN, DualQ, FQ/CoDel/Cobalt/PIE with L4S support, scenario scripting
● https://www.nsnam.org/wiki/L4S-support

https://riteproject.eu/dctth/
https://www.ietf.org/mailman/listinfo/tcpprague
https://www.ietf.org/mailman/listinfo/tcpprague
https://www.ietf.org/mailman/listinfo/tcpprague
https://www.ietf.org/mailman/listinfo/tcpprague
https://www.ietf.org/mailman/listinfo/tcpprague
https://www.ietf.org/mailman/listinfo/tcpprague
https://github.com/L4Steam
https://github.com/L4Steam
https://github.com/L4Steam
https://l4steam.github.io/
https://github.com/heistp/l4s-tests
https://github.com/ffund/sce-l4s-bakeoff
https://www.nsnam.org/wiki/L4S-support
https://www.nsnam.org/wiki/L4S-support
https://www.nsnam.org/wiki/L4S-support

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.18

Prague Congestion Control

Q&A
and spare slide

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.19

DCTCP AQM: Difference from Classic

● immediate AQM – no smoothing
● simple ramp or step threshold

● Can configure Q much lower than optimum in [DCTCP-stability]
Q ≈ 0.17*RTT

● Because utilization is fairly insensitive to non-optimal Q

[DCTCP-stability] Alizadeh, M., Javanmard, A., and B. Prabhakar, "Analysis of DCTCP: Stability, Convergence, and
Fairness", ACM SIGMETRICS 2011 , June 2011,

if (q > Q) ECN-mark

q

© CableLabs, 2018. Do not share this material with anyone other than CableLabs Members, and vendors under CableLabs NDA if applicable.20

Event Cycles
Typical DCTCP implementation

time

1 RTT1 RTT 2 RTT 3 RTT 4 RTT

rcvr

sndr

data

ACK

...

update: F
update: α

F
α

F
α
F
α

F
α

αW

CWR state (1 RTT)
no further reductions

αW

CWR state (1 RTT)
no further reductions

 = ECN mark

congestion window reduction

reduction triggered on first ECN mark after !CWR

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

