For discussion How to Apportion Blame for a Queue with Arrivals in Bursts?

Bob Briscoe, Independent

<research@bobbriscoe.net>

Feb 2023

This research was funded the Comcast Innovation Fund

Question

- What AQM marking best apportions blame for a queue with arrivals in bursts?
- Only marking packets, with no flow state
- Arrivals in bursts can lead to a queue
 - even if they can be served on average
- Subsequent smoother arrivals sit behind the burst
 - with knock-on impact on the next arrivals
 - even after the initial burst has all departed

<u>Answer so far</u> (spoiler alert)

- Definitely not sojourn marking
- The alternative I thought would work is better but not good enough

Roadmap

- Question
- Explanation of approach
- Explanation of parameter space
- Results
- Evaluation
- Interpretation
- Implications & Next steps

Approach

- Propose marking approaches (see later), then compare
- Model? Simulate? Testbed?
 - model first: initial goal is understanding
 - noise of reality (packet sizing, timing dither, sync effects) could otherwise obstruct
- Unresponsive? Responsive?
 - unresponsive: cannot assume a response, so marking might solely drive policing*
- Simplest sufficient scenario; 2 flows, a & b, with:
 - constant but different burst sizes, β
 - constant but different capacity shares, $\boldsymbol{\lambda}$
 - No need for either to vary (understand bursts first, not bursts of bursts)
- Reduces to 2 (sawtooth) waves with different amplitude β & wavelength (interval t_i)
 - capacity share, $\lambda = \beta / t_i$
 - any 1 of these 3 variables depends on the other 2

* might use flow state

Approach Normalized metrics

Goal: results applicable to any link rate and any step marking threshold delay

- Burst size β is in units of time (queue delay)
 - normalized to: marking threshold = 1 unit of time
- On time series plots, time is also normalized
 - queue delay at marking threshold = 1 unit of time
- Marking probability, p, and capacity share, λ
 - both dimensionless and bounded within [0,1]
 - so normalized marking rate, λp , also bounded within [0,1]

Approach Parameter space

• A full scan of all 4 dimensions:

 β_a , λ_a , β_b , λ_b

would generate more heat than light

- To focus on apportioning blame, scan the parameter space of one flow (β_a , λ_a), while trying to keep the whole system constant, i.e.
 - constrain $\Sigma\lambda$ (utilization) to a small selection of constants (assume $\Sigma\lambda \leq 1$)
 - constrain $\Sigma\beta$ (max total burst) to a small selection of constants
- Compare two marking approaches, based on the q delay...
 - ...a packet itself experiences (the queue ahead at enqueue)
 - ...a packet causes to others (the queue behind at dequeue)

How to Interpret the Parameter Space

Expected Service Time (EST) marking with two unresponsive flows, a & b

Capacity fractions, $\lambda_a \& \lambda_b$: utilization, $\Sigma \lambda = 100\%$; Burst sizes $\beta_a \& \beta_b$: $\Sigma \beta = 125\%$ of marking threshold

Same example parameter space in 3-D

Expected Service Time (EST) marking with two unresponsive flows, a & b

Capacity fractions, $\lambda_a \& \lambda_b$: utilization, $\Sigma \lambda = 100\%$; Burst sizes $\beta_a \& \beta_b$: $\Sigma \beta = 125\%$ of marking threshold

8

Ideals for apportioning blame

• Marking probability of one flow, p_a

1) should monotonically increase with its burst size, β_a

2) should not decrease with its capacity share, λ_a

assuming the whole system is otherwise constant

- Satisfying both ideals would be robust but probably unattainable, e.g.
 - would fail on #1 if marking saturates, e.g. v large bursts
 - unsure if #2 is even satisfied with equal constant burstiness (see control expt later)
- Some scope to relax either ideal,
 - but unable to quantify precisely, so far

Compare 2 marking approaches

- based on delay to self, q_s
 - sojourn-based marking (subscript *s*)
 - queue delay ahead at enqueue
 - visualization: the amount and flow colour of the q over the threshold
- based on delay to others, q_e
 - expected service time (subscript *e*)
 - queue delay behind at dequeue
 - visualization: colour of flow being dequeued when the q is over threshold

- Detailed 2-D plots (like above)
 - in 4 complementary slide packs
 - 1 for each metric
- choice of 4 metrics
 - p_a : marking probability of flow a
 - $\Delta p = p_a p_b$
 - $\lambda_a p_a$: marking rate of flow a
 - $\Delta(\lambda p) = \lambda_a p_a \lambda_b p_b$
- Next 2 slides: 3-D plots
 - using first metric only (p_a)
 - axes will be too small to read, but all like the example to the right

Results – Examples

Sojourn marking with two unresponsive flows, a & b

Capacity fractions, $\lambda_a \& \lambda_b$: utilization, $\Sigma \lambda = 93.75\%$; Burst sizes $\beta_a \& \beta_b$: $\Sigma \beta = 225\%$ of marking threshold

Sojourn marking

EST marking

Expected Service Time (EST) marking with two unresponsive flows, a & b

Expected Service Time (EST) marking with two unresponsive flows, a & b $Capacity \ fractions, \lambda_a \ \delta_b : utilization, \Sigma \lambda = 100\%; \ Burst sizes \ \beta_a \ \delta_b : \Sigma \beta = 106.25\% \ of \ marking \ t \ Capacity \ fractions, \lambda_a \ \delta_b : utilization, \Sigma \lambda = 100\%; \ Burst \ sizes \ \beta_a \ \delta_b : \Sigma \beta = 125\% \ of \ marking \ t \ Capacity \ fractions, \lambda_a \ \delta_b : utilization, \Sigma \lambda = 100\%; \ Burst \ sizes \ \beta_a \ \delta_b : \Sigma \beta = 125\% \ of \ marking \ t \ Label{eq:action}$

Expected Service Time (EST) marking with two unresponsive flows, a & b Capacity fractions, $\lambda_a \& \lambda_b$; utilization, $\Sigma \lambda = 100\%$: Burst sizes $\beta_a \& \beta_b$; $\Sigma \beta = 225\%$ of marking th

"Traffic-Light" Evaluation

ideal:	increase with burst size β_a ?	not decrease with capacity share λ_a ?
sojourn ¹	N ²	Y ¹
EST	Y & N ³	Ν

- Sojourn is not good enough, but EST is not sufficiently better to replace it
- Not as clear-cut as the "traffic light" colours imply
 - see earlier: "some scope to relax either ideal"
 - but "unable to quantify precisely, so far"

¹ in general, other than high max burst and low utilization

² symmetric about the avg burst size

³ decreases from a peak at $\beta_a = \Sigma \beta - 1$ if low capacity share

Why EST is not a panacea

- Two unresponsive flows, a & b: Phase shift, $\omega = 3.0864\%$ Capacity fractions, $\lambda_a = 3/16$, $\lambda_b = 13/16$ ($\Sigma \lambda = 100\%$); Burst queue delays $\beta_a = 18.75\%$, $\beta_b = 106.25\%$ ($\Sigma\beta = 125\%$) Example problematic case for EST marking a, unmarked ps 0.13312 0.14027 ga EST-marked 0.35294 0.089544 as unmarked as EST-marked normalized queue delay, q normalized time, t
- for a grey flow with low capacity share and smaller bursts than pink
- even though grey arrives smoothly, it can only depart in the gaps betw. pink bursts
- variation in these gaps and in how many grey bursts arrive between pink ones is high relative to average grey traffic
- EST marks the residual grey in the q when the next pink burst arrives
- and the pink burst gets pushed back, closing subsequent gaps
- on average grey fits between pink bursts, but EST punishes grey for all variance

Next steps

- Design a better marking approach?
 - using the insights from this research
 - based on sthg like $q_e q_s$. Perhaps $2(q_e q_s)(q_e + q_s)$?
- Validate model against:
 - ns3 simulation
 - testbed
- Design and evaluate an aggregate policer?

More information

- These slides, full results, simulator code
 - https://github.com/bbriscoe/l4s-aqm/blob/master/papers/working/README.md
 - Note: pls ignore current version of tech report
 - written before this latest work

How to Apportion Blame for a Queue with Arrivals in Bursts?

Discussion and spare slides

Revisit Original Expt 1.1:

Compare 2 marking approaches: Sojourn (s) & EST (e)

Experiment plans

- For a set of fixed capacity shares $\lambda_a + \lambda_b = \Sigma \lambda$ (constant)
- burst size β : increase β_a , decrease β_b , with $\beta_a + \beta_b = \Sigma\beta$ (constant)
- measure both marking probabilities, $\rm p_{s}~\&~p_{e}$
- for each approach, report mean, max & min of each marking metric over a range of phase shifts

Control expt 1.2:

- Same as #1.1, with $\Sigma\lambda$ and $\Sigma\beta$ constant
- but with β_a = β_b increase λ_a
- marking should not depend on capacity share, $\boldsymbol{\lambda}$
- (can visualize this on 3-D plots of expt 1.1)

- Expt 2.1:
 - Same as #1.1, except hold $\beta_{\mbox{\tiny b}},$ while increasing $\beta_{\mbox{\tiny a}}$

✓Expt 3.1:

- Same as #1.1 except increase β_a with λ_a
- (can visualize this on 3-D plots of expt 1.1)

- Expt 4? Model packetization or use ns3
- Redesign marking?
- Design & Model aggregate policer

Approach – more detail **Phase Shift**

- At each point in the parameter space, start from multiple different phase shifts
- Avoid always including zero as one phase shift

• Record mean, max & min* of marking metrics

^{*} variation is not symmetric, so std. dev. not applicable

Typical Spread of Results over 8 phase samples

Expected Service Time (EST) marking with two unresponsive flows, a & b

Capacity fractions, $\lambda_a \& \lambda_b$: utilization, $\Sigma \lambda = 100\%$; Burst sizes $\beta_a \& \beta_b$: $\Sigma \beta = 225\%$ of marking threshold

Interpretation: phase shift results

- points where spread increases are where the pattern repeats after a few bursts
 - i.e. lowest common integer multiple of the two burst intervals is low
 - then "law of large numbers" doesn't apply
 - unusual coincidences more likely, e.g. bursts never precisely coincide
- flows are unlikely to get stuck at these points
 - lower marking causes flow to increase window
- recommend a little randomization of burst sizing just in case

Approach – more detail Minimal Repeating Pattern

- Duration: lowest common integer multiple
 - of the two burst intervals (not integers themselves)
- Find where to start
 - assume a sufficient standing queue to never go idle
 - start 2nd pass where standing q is smallest
 - challenge: 2 passes without doubling the run time

^{*} variation is not symmetric, so std. dev. not applicable

normalized time, t

Approach What if's

- Check the validity of the approach, by investigating alternative avenues
 - increase burstiness of flow a, β_a , while holding β_b at a small selection of const. values
 - increase $\lambda_a \& \beta_a$ together, related by a selection of factors, e.g. $\Delta \lambda = k \Delta \beta$ (different diagonal paths across the 3-D surface)
 - investigate including zero in the range of phase shifts