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Abstract

A virtual queue can be used to predict when a real

queue is about to grow. This memo explains why us-

ing a leaky bucket to implement a virtual queue is not

useful, despite a superficial similarity. However, it is

possible to implement a useful virtual queue using two

leaky buckets. It requires a simple trick that can typi-

cally be implemented with existing hardware.

1 Introduction

A virtual queue imitates how a real queue would
behave if it were feeding a line of less capacity than
the real line. The length of the virtual queue can
then be used to feed notifications into the control
loop that regulates the load on the real queue. This
can keep the real queue extremely short.

A virtual queue does not actually hold any data;
it is merely a number that is incremented as pack-
ets arrive and decremented continuously in order
to model packets being sent to an imaginary link
slower than the real one.1

The goal of this paper is to briefly describe a neat
trick for implementing a virtual queue using exist-
ing hardware. It merely involves switching round
an ‘if’ and ‘else’ clause in a single rate three colour
marker [HG99], which is a linked pair of leaky buck-
ets widely available in existing networking chipsets.
In the chipset we chose to modify, this involved sim-
ply flipping a bit in a data table.

That in itself would require just a two-page memo
(§4 & Appx. A). However, it takes longer to ex-
plain how not to implement a virtual queue. We
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1The term virtual queue is also used for a queue on an

ingress interface that tracks the state of the queue on an
egress interface of a router or switch. This is not the sense
intended in this paper.

argue against the assumption that a leaky bucket
is sufficient to implement a useful virtual queue.

A leaky bucket was originally conceived as a way
to limit traffic under the assumption of an open-
loop control model. It was not originally designed
for signalling information into a closed-loop control
system. For that, we argue that the trick with two
leaky buckets is needed—one is not enough.

Conclusive evidence to back up our argument will
require further work. In this brief memo, we outline
the intuition and point to incidental evidence in
existing empirical studies to support our argument.

2 Related Work

Virtual Switch: Coucoubetis and Weber first
proposed the virtual queue in an ATM set-
ting as a way to rapidly estimate a very low
loss probability. It was devised so that timely
decisions could be made on flow admission or
re-routing, without having to wait for very
rare loss events [CW96, §5]. They derived the
asymptotic loss probability for N superposed
traffic streams as N →∞ in a switch where the
service rate and buffer size both increase lin-
early with N . Because they found that the loss
probability scales O(exp−N ), they suggested
that very low loss probabilities could rapidly
be estimated by feeding a sample of 1/k of
the streams into what they called a ‘virtual
switch’ with 1/k of the line rate and 1/k of the
buffer size of the actual switch. For instance,
they claimed that one can estimate an actual
loss probability of 10−10 without waiting a few
tens of billions of cells for the extremely rare
actual loss events. Instead one only needs to
wait a few hundred cells to measure the much
higher 10−2 (1%) loss probability of a virtual
switch that is scaled down by a factor of 1/5

Version 04 1 of 7

mailto:bob.briscoe@bt.com


TR-DES8-2011-001 How to Build a Virtual Queue

(i.e. k = 5). This virtual switch then models
the actual loss probability of 10−2k = 10−10.

GKVQ: Gibbens and Kelly’s virtual queue [GK99]
built on this idea, but moved away from scal-
ing down the traffic, only scaling down the line
rate and buffer size. Without having scaled
the traffic, they recognised that the predictive
power of a virtual queue is best when its capac-
ity and buffer size are only slightly less than the
real buffer. With a scaling factor just under
one, the algorithm gives a reasonably accurate
prediction of the real queue without the com-
plexity of sampling to scale down the traffic.
The gain in simplicity comes at the expense of
losing a fraction of line utilisation.

AVQ: Kunniyur & Srikant [KS01] propose a vir-
tual queue with only the drain rate scaled
down, not the buffer size or load. Unlike the
schemes above, the scaling factor is not fixed,
but a target utilisation is fixed and the scal-
ing factor adapts slowly downwards if arriving
traffic exceeds this fixed utilisation, hence they
called it an adaptive virtual queue (AVQ).2 For
the present paper, AVQ is an excellent exam-
ple of how ineffective a virtual queue becomes
when it is implemented with a leaky bucket
(see §3.2).

PCN: The IETF uses the term pre-congestion
notification (PCN) for marking driven by a
virtual queue rather than the real queue.
It has standardised two virtual queue algo-
rithms [Ear09]:

ETM: Excess traffic marking, meaning only
marking the packets that exceed a config-
ured bit-rate (we call this ‘tail-marking’
in the present memo).

ThM: Threshold marking, meaning marking
all packets when the virtual queue ex-
ceeds a threshold.

The IETF’s PCN algorithms are for marking
inelastic traffic in a prioritised scheduling class.
The idea is to detect whether the higher pri-
ority traffic has exceeded a preconfigured frac-
tion of the line-rate, and consequently trigger
flow admission control or even flow termination
to protect the service offered to the remaining

2Unfortunately, the scaling factor also slowly adapts up-
wards (with a cap at 1) when utilisation is less than the fixed
target. Thus, after a relatively short period of low utilisa-
tion, the scaling factor will rise to 1. At the start of the next
busy period, just when the predictive power of the virtual
queue is most needed, it will not grow any sooner than the
real queue. By the time it has adjusted its drain rate, the
busy period might well have ended. This effect was never
observed in [KS01], because all the simulations included in-
finite flows, therefore the busy period continued indefinitely.

traffic. Initially, a ramp function was proposed
to trigger marking because it was thought that
a step function might cause instability. How-
ever, wide-ranging simulations at different in-
stitutions showed that a step was sufficient
(e.g. Zhang’s PhD thesis [Zha09] and the re-
port of Menth & Lehreider [ML07]). Although
the PCN standard algorithms were targeted
at controlling inelastic traffic, now that they
are implemented it is possible a step function
might be applicable for control of elastic traffic
too (see §5 on applications of virtual queues).

3 One Bucket is not Enough

3.1 Terminology

Throughout this paper the term leaky bucket
should be considered to also imply the token bucket
alternative. An implementation of either can al-
ways serve the purpose of the other, by simple re-
arrangement of the inputs and outputs. A leaky
bucket fills with tokens that represent the size of
each arriving packet and it drains at a configured
constant virtual rate. A token bucket fills at the
constant virtual rate and drains tokens that repre-
sent the size of each arriving packet (Figure 1).

packets
consume tokens

token fill rate

virtual drain  rate

packets
cause
token
input

Figure 1: Equivalence of token bucket (right) and
leaky bucket (left)

3.2 Leaky Bucket ≡ Virtual Queue?

When it comes to implementing virtual queue al-
gorithms, superficially it seems that a leaky bucket
would suffice. Network kit often provides hardware
leaky buckets. Therefore, as long as a leaky bucket
can be configured to mark rather than drop pack-
ets when it has filled, it seems that it is already
possible to implement a virtual queue with current
hardware.

However, we will now use Figure 2 to explain
why a virtual queue implemented with a leaky
bucket loses too much information to be gener-
ally useful for congestion marking. We will com-
pare a virtual queue that is implemented using
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at time t

at time t
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input rate
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a) input and output rates
of virtual queue

b) tail-marking
virtual queue
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virtual queue

excess-rate marking

solid marking

Figure 2: Comparison of virtual queues with b) tail-marking and c) threshold marking, both with the
same input and output rates (a)

a leaky bucket, with one designed specifically for
congestion-marking. They happen to be repre-
sented by the two types of virtual queue standard-
ised by the IETF, which is not surprising given one
was standardised because it could be implemented
with current leaky bucket hardware, while the other
represented the preferred target design:

Tail-marking (Figure 2b): This algorithm marks
packets only when the queue is full which leads
to excess traffic marking. That is, only the
packets that exceed the configured bit-rate are
marked;

Threshold-marking (Figure 2c): This algorithm
marks all packets when the queue exceeds a
threshold part-way between full and empty.
Unlike tail-marking, threshold-marking can-
not be implemented with existing leaky bucket
hardware, which invariably does not have the
facility to mark when only part-full.

To make the two comparable, we imagine that the
threshold is set at the same depth as the full depth
of the tail-marking variant. We also consider that
both variants are subjected to the same pattern of
input rate and the same constant virtual output
rate, as shown in Figure 2a).

From the point when the input rate first crosses the
virtual output rate, both virtual queues grow iden-
tically, until the tail-marking variant has filled and
the threshold marking variant reaches its thresh-
old. Then both virtual queues start marking at the
same instant.

From this point, the behaviour of the two vari-
ants diverges. With the input rate continuing
to exceed the output, the threshold-marking vari-
ant continues to fill beyond the threshold, while
the tail-marking variant (conceptually) overflows.
This causes their marking behaviour to differ. The
threshold-marking queue marks all packets, while
the tail-marking queue marks only the fraction of
packets that exceed the virtual output rate. The
latter is because, every time a packet is marked, the
virtual queue cannot grow further, but it still emp-
ties at the virtual output rate. So the virtual queue
continually drains just enough to fit in a proportion
of unmarked packets that matches its output rate.

For illustration, we imagine that some external load
reduces its input rate sharply in response to onset of
congestion signals, which results in the downward
sawtooth of the input rate at the queue shown in
Figure 2a). Therefore, a round-trip after marking
starts, the effect of the source backing down below
the virtual output rate reaches the input of the
queue. This causes both variants of virtual queue
to start to empty. The tail-marking variant is no
longer full therefore it immediately stops marking.
Whereas the threshold marking variant continues
marking because it is still well above its threshold.
By time t, which is the instant illustrated in the
left hand diagrams, the tail-marking virtual queue
is nearly empty while the threshold-marking variant
is still filled above the threshold and therefore still
marking.

A short while after time t the tail-marking vir-
tual queue becomes completely empty, while the
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threshold-marking variant is still marking. A little
later it stops marking but it still has the rest of
the virtual queue to drain before it finally empties
some time later.

It may seem a virtue that the tail-marking queue
stops marking as soon as the input rate drops below
the output. However, in the next section (§3.3) we
will discuss why it is not necessarily desirable to
curtail signalling.

The length of a queue represents the sum (or equiv-
alently the integral, in a fluid model) of the excess
of arrivals over departures. So, for instance, if the
input rate increases linearly as in Figure 2a), the
queue length will trace the integral of a linear func-
tion: a square law curve, illustrated by the convex
hockey-stick shape in Figure 2c). This convexity
gives the system inherent stability without having
to do anything more complex than making conges-
tion signalling depend on queue length. Even if the
input rate does not increase, but sits flat above the
output rate, the queue and therefore the amount
of congestion signalling will continually increase,
which is the desired behaviour to clear a standing
queue.

In contrast, the tail-marking virtual queue in Fig-
ure 2b) merely marks linearly—in proportion to
excess rate. Once it starts marking, it signals no
differently whether the excess of load over output
has been persistent or transient. In Figure 2c)
the shaded area represents the information that
the tail-marking queue forgets, while the threshold
marking queue retains it.

AVQ provides an excellent illustration of the knock-
on problems that arise when a tail-marking queue
is used to generate congestion marks. Recall that
AVQ adapts the drain rate of the virtual queue in
order to aim at a target utilisation; set to 98% in
the AVQ simulations [KS01]. When using a virtual
queue for congestion control, the aim is to track
movements of the real queue as faithfully as possi-
ble, by setting the virtual capacity just below the
real capacity, hence AVQ’s choice of 98%. How-
ever, even in AVQ’s simplest simulation scenarios
with just long-running TCP file transfers, the drain
rate of AVQ’s virtual queue adapts downwards un-
til it hovers below 49% of actual capacity. It seems
that AVQ has to push the virtual drain rate of the
virtual queue down this far in order to get it to
generate enough marks to get the load to reduce
to 98% of capacity. This is because a tail-marking
queue fails to retain information about packet ar-
rivals once it is overflowing. With such a wide
discrepancy between the virtual and the real drain
rates, this tail-marking queue will no longer be use-
ful for predicting the movements of the real queue.3

3We will need to test whether AVQ with a threshold-

3.3 A Design Principle

Gibbens & Kelly argue that the number of pack-
ets marked4 should be the same as the num-
ber that contribute to the queue exceeding its
marking threshold (sample path shadow pricing or
SPSP [GK99]).5 Intuitively one can think of this as
a design principle that recommends ‘conservation of
congestion information’.

However, it is inadvisable to mark packets that con-
tributed to the initial growth of the queue (because
one cannot tell whether an increasing queue will
just fall away of its own accord, or continue until it
hits the threshold, at which point most packets that
contributed to this queue growth will have already
departed). Therefore Gibbens & Kelly argue that
packets should continue to be marked even after
the queue starts to shrink; in order to compensate
for those that were not marked before the thresh-
old was reached. This is why the GKVQ algorithm
continues to mark until the queue is empty and the
busy period is over.

Wischik assesses how various marking algorithms
(RED, REM, PI, BLUE) compare with the ideal
but unattainable SPSP of Gibbens and Kelly. The
comparison is in respect of how many packets they
mark, and whether some designs are more prone to
some flows being unfairly marked when other flows
caused the congestion. Wischik also proposes a
new algorithm called ROSE that improves on them
all [Wis99, §5].

It can be seen from the above that the tail mark-
ing algorithm is very poor at conserving congestion
information. It cannot hold a count of how many
bits arrive after the threshold is exceeded, which is
why a leaky bucket is unlikely to be effective for
signalling congestion information in a closed loop
system. In contrast, the threshold-marking vir-
tual queue is better with respect to ‘conservation
of congestion information’. It is not perfect, for in-
stance it does not continue marking until the queue
is empty. But at least it continues to mark while
the queue is emptying down to the threshold.

As we shall see in the next section, there is a sim-
ple way to implement a threshold marking virtual
queue using existing hardware. This tempts us to
wonder whether a threshold marking virtual queue

marking virtual queue would adapt the virtual drain rate to
about 98%.

4Strictly the number of bytes in marked packets.
5Standard TCP does not take note of the amount of con-

gestion signalling within a round trip—it only distinguishes
between none or some. However, modern transports are
being produced that do—to excellent effect, e.g. Relentless
TCP [Mat09] and Data Center TCP [A+10]. Therefore it is
worth worrying about how many marks an algorithm gener-
ates.
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constant
token drain rate

packets
cause

token fill

Figure 3: Threshold-marking leaky bucket concep-
tually split into two leaky buckets

might be good enough as a general purpose AQM
algorithm. Undoubtedly threshold marking will not
be as good as ROSE. But it only has to be good
enough, not necessarily perfect.

4 Building a Virtual Queue
from Two Leaky Buckets

We now present a trivially simple way to implement
a threshold marking virtual queue using existing
hardware.

A threshold-marking virtual queue can intuitively
be thought of as two leaky buckets stuck one on top
of the other so that the join between them forms
the marking threshold (Figure 3). What we need
is hardware that can mark packets if the bottom
bucket is full and that implements logic to join the
two buckets together.

The standard single rate three colour marker
(srTCM [HG99] see Figure 4) seems close to what
we want, but it’s not quite right. It consists of two
leaky buckets, C for the committed burst size and
E for the excess burst size, plus token filling and
consuming algorithms. It can mark packets if one of
the buckets is full and it has logic to join together
the two buckets, but not quite the right logic for
our purposes.

The consuming algorithm of an srTCM will not
consume tokens from bucket E unless it has already
emptied bucket C. And similarly the filling algo-
rithm will not fill bucket E unless it has already
filled bucket C. In other words, it consumes to-
kens from bucket C preferentially and fills bucket
C preferentially as well.

For our purposes, we certainly need to fill C pref-
erentially but we want to consume from E prefer-
entially, not C. This slight change is the only sub-
stantial difference between the standard srTCM in

constant
token drain rate

fill C
preferentially

preferentially
consume from C

packets cause
token fill

Bucket
E

Bucket
C

Figure 4: The standard single rate three colour
marker (srTCM)

packets cause
token fill

constant
token drain rate

Bucket
E

preferentially
consume from E

marking
threshold

Bucket
C

fill C
preferentially

Figure 5: How to build a threshold marking leaky
bucket from two leaky buckets

Figure 4 and the threshold marking virtual queue in
Figure 5 (carefully compare the text at the bottom
beside each consuming algorithm).

Appendix A uses pseudocode to show how simply
switching round one ‘if-else’ clause turns an srTCM
into a threshold marking virtual queue.

Three colour markers are a standard feature
available in most modern networking chipsets.
They are used to colour the IP-Diffserv, Ether-
net 802.1p or MPLS Traffic Class codepoints in
packets [NBFB98, IEE97, LFE+02] depending on
whether the rate exceeds a committed burst size
or an excess burst size. Specifically, a TCM marks
packets ‘green’ if neither bucket is full, ‘amber’ if
the committed bucket is full and ‘red’ if both buck-
ets are full, where green, amber and red are three
different codepoints that indicate traffic profiles re-
spectively in contract, out of contract but within
an excess allowance, and fully out of contract.

A threshold marking leaky bucket would mark the
ECN field whenever the equivalent three colour
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marker would have re-coloured the class of service
to amber or red. This is an easy change, because
existing three colour markers can always be re-
configured to map colours to codepoints in header
fields.

Nonetheless, although colour re-configuration is
easy, the consuming algorithm still needs the slight
change above. Wide availability of srTCMs that
need to be slightly changed would be irrelevant if
this slight change were an impossible change.

Happily, our colleagues from Broadcom found that
it was straightforward to switch round the filling
logic of the srTCM in their chipsets. The original
TCM standards define different variants of TCM.
Therefore Broadcom’s TCMs are designed to use
common hardware for the pair of buckets, while
the particular variant of logic that links the buckets
together depends on the setting of a data table. To
implement the new structure only requires a new
setting in this table.

Using this technique, a threshold marking vir-
tual queue has been available in several Broadcom
switch devices introduced since 2009. We hope this
paper encourages other chipset developers to in-
vestigate whether a similar modification can cre-
ate threshold marking virtual queues from existing
hardware TCMs.

5 Applications of Threshold-
Marking Virtual Queues

As pointed out under Related Work, the threshold-
marking virtual queue has been standardised by the
IETF as a way to signal whether inelastic traffic
should be admission controlled [Ear09].

Of greater current interest is the potential use of
a virtual queue as the active queue management
(AQM) mechanism for elastic traffic—which could
involve widespread deployment in buffers through-
out the Internet (at layer 3 and below).

Data centre TCP (DCTCP [A+10]) already uses a
simple step threshold function very successfully in
practice. DCTCP uses the fact that a step is a de-
generate case of the RED ramp. It turns RED’s
queue averaging time down to zero and it turns
RED’s ramp function into a step threshold by set-
ting the minimum and maximum of the ramp to the
same value. In DCTCP, the threshold is already set
very shallow, so a threshold-marking virtual queue
would seem to be a natural evolution direction—
aiming to sacrifice a little utilisation for predictable
and ultra-low queueing delay.

An initial concern is whether a step threshold will
lead to synchronisation and/or oscillations, which

is why random early detection (RED [FJ93]) uses
a sloping ramp function and its marking is ran-
domised. No instability problems have been re-
ported with DCTCP. However further research will
be needed to rule out the possibility in the wide
range of scenarios possible in public networks.

6 Conclusions & Further Work

This paper has deprecated a single leaky bucket
as a way to implement a virtual queue for closed-
loop control of elastic traffic, because it fails to
remember the traffic that arrives while the queue is
overloaded. This could lead to pathological effects,
including the possibility of not properly clearing a
standing queue.

Nonetheless, we have proposed a better way to im-
plement a virtual queue using existing hardware—
using two leaky buckets (or equivalently, two to-
ken buckets). It simply involves switching round
the order of an if-else clause in a single rate three
colour marker (srTCM), which is a linked pair of
leaky buckets. Given wide availability of srTCMs
in networking chipsets, this opens the possibility of
widespread virtual queue deployment.

This results in an instantaneous step function, in
contrast to the smoothed gradual functions of RED
and other AQM algorithms. Data Centre TCP
(DCTCP) is an existence proof that end-system
algorithms can be tailored to such a rudimentary
AQM in the network. However, DCTCP has not
been assessed with a virtual queue, which would
not provide the natural packet pacing that a real
queue introduces (although high speed bottlenecks
hardly introduce any pacing). The robustness of
virtual queues for elastic traffic control has been
assessed via simulation [LBS05], but not with such
an unsmoothed step function. It will also be nec-
essary to map out a way in which virtual queues
could be incrementally deployed in public networks
with a mix of ECN and non-ECN transports.
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A Pseudocode

A.1 Single Rate Three Colour Marker

Token fill and packet marking algorithm

foreach packet

if (TC < C-B) {

mark packet green

TC += B

} else if (TE < E-B) {

mark packet yellow

TE += B

} else

mark packet red

where B is the packet size, C & E are the sizes of each
bucket and TC & TE are their respective token levels.

In practice a token fill algorithm will also handle cases
where only part of a packet will fit into the bucket by
filling the bucket then if necessary adding the remain-
der to the other bucket. Such detail has been omitted
to emphasise the primary intent of the algorithm.

Token draining algorithm

foreach packet

t_now = now()

F = R(t_now - t_previous)

if (TC > 0)

TC -= F

else if (TE > 0)

TE -= F

t_previous = now()

where R is the committed information rate.

Equivalently, instead of running the above algorithm
on every packet arrival, the if-else logic block can be
invoked repeatedly every F/R seconds.

A.2 Threshold Marking

Token fill and packet marking algorithm To
implement a threshold-marking leaky bucket the only
change required to an srTCM is to reverse the order of
the if-else logic in the draining algorithm as follows:

if (TE > 0)

TE -= F

else if (TC > 0)

TC -= F
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