Delay based additive increase for scalable congestion controls

Joakim Misund

University of Oslo, Norway
joakimmi@ifi.uio.no

ABSTRACT

As network capacity continue to increase additive increase’s
inability to claim capacity more quickly than one packet
per round-trim time becomes more apparent. The constant
increase of one packet cannot be changed without affecting
important steady state properties such as convergence.

‘We propose that the fundamental problem is that we strive
to have one algorithm to handle steady state and transient
state. The transient state we focus on here is that in which the
network is underutilized and one or more TCP connections
are trying to bring it to full utilization. The two states are
different enough to warrant different treatment.

The solution that we propose consist of two parts. The first
is to be able to detect that a connection is in transient state
that warrants more rapid increase. This detection is feasible
to do for scalable congestion controls. So although this can
be used for tradition TCP it is much more useful for scalable
congestion controls that have little oscillation in steady state.
The second part is a calculation of an appropriate increase
factor that takes queue delay impact into consideration. When
we use this alternative increase factor we say that we are in
acceleration mode.

‘We show that the detection is working as intended, and that
acceleration mode significantly improve acceleration without
overshooting more that intended in various conditions. We
implemented the algorithm in TCP Prague and compare it
to BBRv2 and regular TCP Prague.

1 INTRODUCTION

Traditional TCP congestion control algorithms are slow to
recover full utilization when there is a positive change in
available capacity. The reason is that additive increase is
used for increasing the congestion window in congestion
avoidance. Depending on the round-trip time and number of
flows it can take a couple of milliseconds or seconds to reach
full utilizationn.

In this paper we focus on the situation where one of more
flows in congestion avoidance loose a regular congestion signal.
This situation will be called a open-loop phase. In steady-
state the controller gets regular signals, but once the go way
the controller becomes open-loop.

We introduce a faster acceleration mode that can be added
to scalable congestion controls to improve acceleration. We
found it necessary to introduce a new mode because any
changes to the steady state behaviour seems to have negative
consequences for oscillation and competition between flows.
We transition from congestion avoidance to faster accelera-
tion mode if we detect that congestion events do not happen
when they ought to. This is feasible for scalable congestion
controls because they have very little oscillation in steady

state. This makes it timely to detect a change from the ex-
pected behaviour in steady state. In the acceleration mode
the window is increased in such a way that the queue over-
shoot is bounded. For all the experiments in this paper the
overshoot is set to 1 millisecond, but it can be configured to
any value.

We combine the faster acceleration mode with a previously
discussed mode called the overload mode. Overload mode
is entered if there is a unusually large increase in queueing
delay. In the overload mode the congestion window is reduced
by either the proportion of CE marks or queueing delay
depending on which gives the most conservative reduction.
The decrease based on queueing delay is so that it tries to
drain or remove the standing queue. When the algorithm has
back-to-back reductions the effect of a previous change has
not been measured when the next change occurs, therefore
queueing delay is only reacted to every other round-trip time.
However, ECN is reacted to every round-trip time as usual.

Together, these two modes make acceleration when avail-
able capacity increases and alleviation of congestion when
available capacity reduces more timely. Consequentially, uti-
lization and queueing delay is expected to improve. But as we
will discuss further having higher utilization might actually
hurt queueing delay as there is less headroom for competing
traffic and to deal with sudden reductions in capacity.

2 PROBLEM AND MOTIVATION

Congestion control algorithms operate in two states; steady
state and transient state. In steady state competing flows
experience a reoccurring oscillation. Usually the term steady
state implies no movement or change, but for most congestion
controls steady state has a reoccurring oscillation. In control
theoretical terms steady state often has a limit cycle. The
oscillation is continually reoccurring and it is normally within
certain limits which makes it somewhat predictable.

When a flow is in steady state it uses a algorithm called
congestion avoidance. Each round-trip time the congestion
window is increased by one segment, and at each congestion
event (at most one per round-trip time) the window is reduced
to a fraction of what it was before the reduction. Different
congestion control algorithms use different fractions which
means that they have different limit cycle lengths. TCP Reno
uses a fraction of 0.5. TCP Cubic uses a fraction of roughly
0.7. DCTCP has its fraction proportional to the fraction of
packets carrying a CE mark. Common to these variations is
that they use additive increase between congestion events.

Additive increase makes the time to reach full utilization
proportion to the difference between the bandwidth-delay
product (BDP) and the current aggregate congestion window.

TR-UIOJM-2022-002

The number of round-trip times can be expressed as follows:

1 N-1
X=5x <BDP—ZWL->

=0

Where N is the number of flows and W is the congestion
window of a flow. This can easily be converted to time by
multiplying by the round-trip time. The worst case happens
when N = 1.

Scaleable congestion controls can keep the average time
between congestion events constant as capacity increases.
They are able to do so because they react to the proportion
of packets carrying CE marks. The steady state proportion
for DCTCP and TCP Prague is 2 marks per round-trip time.
As long as the network is able to produce 2 marks per round-
trip time it does not matter what the capacity is. There will
be no oscillation in theory.

Wireless technologies are common in today’s internet and
it is unlikely to change. These technologies often experience
rate changes in either direction which makes it important
for congestion control algorithms to be able to deal with the
appropriately. It would be appropriate to be able to accelerate
fast when available capacity increases, and react fast when
available capacity decreases.

When there is an increase in available capacity it takes
congestion avoidance with additive increase a long time to
reach the new capacity. If the current window is W and
the new steady state window changes to 2 x W it takes W
round-trip times to reach full utilization. This is particularly
slow if there are few long-running flows.

When available capacity decreases it takes scalable conges-
tion controls that use smoothing on the CE-marks it receives
usually a long time for a sufficient response. Changing the
smoothing factor so that one responds more and faster usu-
ally has negative effect on steady state oscillation. This make
detecting a abnormal state less timely. Additionally, delay is
a more fine-grain signal compared to CE-marks when there
is a overload scenario because marking probability tends to
become saturated (100%). The information about how bad
the congestion is not present. So making a change to how
CE-marks are used seem like a difficult approach.

3 ACCELERATION MODE

This section is divided in two parts. The first part in about
detecting a change to open-loop phase. The second part
discussed different algorithms for increasing the congestion
window faster than additive increase.

3.1 Determining the current state

To detect a change one has to know what to expect.

There are possible many ways to go about detecting a
change to open-loop phase. One way is to actively test if there
is more available capacity available periodically. This can
be done using packet bursts or chirps for a certain duration.
A probe can be analyzed and compared to what one would
expect to see. While this might work fine when there is a

20f 6 Version 00A

Draft: Limited Distribution only

Acceleration Mode

single flow synchronization among multiple flows make this
approach complicated.

A different way is to passively monitor how steady steady
state behaves and look for unexpected progression. This is
much simpler compared to doing a active measurement and
detection.

In steady state a flow experience regular congestion events.
The time between each congestion event can be used with the
time since the last congestion event to determine whether or
not a flow has entered a open-loop phase. In order for this to
be feasible this detection has to be timely and reliable. If the
condition for detection is too conservative the detection come
too late to make a difference. However, if it is too sensitive it
can lead to unwanted oscillation and flow rate inequality.

The simplest way to achieve a detection algorithm that uses
the time between congestion events is to simply measure what
the average time between congestion events is in steady state
and compare it to the current time since the last congestion
event. To account for variation, often caused by probabilistic
congestion signals, the variation should be measured and
used with the average. One way to measure variation is to
maintain an average of the mean average deviation (MAD,
note that M is typically median) over multiple samples.

Using the time between congestion events will mean that
the timeliness of the detection algorithm will be strongly
linked to the regular or expected time between congestion
events. A congestion control that has a large sawtooth will
naturally have longer time between congestion events. The
longer the time between congestion events is the more time
it takes to detect a change.The usefulness of the detection
decreases as the expected time between events increase. This
reduces the usefulness of a open-loop detection algorithm
for TCP Reno and TCP Cubic. The algorithms that benefit
the most are those that have little time between congestion
events in steady state. One such group are scalable congestion
controls which react to the proportion of congestion experi-
enced. Because of this we focus on that class of algorithms
in the remaining of the paper.

3.2 What should we do?

Assuming that we have decided that we should increase the
congestion window faster than what additive increase would
do we need to decide on how fast.

Go back to slow start. Slow start is used for the initial
rate probing and can be used in open-loop phase too. There
is a very significant difference between the start-up phase
and open-loop phase after steady state. When a flow enters
open-loop phase it has some useful information about what
the available capacity was before it entered open-loop phase.
This is not the case in the start-up phase.

It is likely that the new available capacity is not far from
where the flow starts its open-loop phase. Slow start is likely
to overshoot the new available capacity and cause queueing
delay with a likely small improvement in time ti takes to
reach full utilization.

09 Aug 2022

Acceleration Mode

Cubic increase function. TCP Cubic uses a cubic function
to reduce time between congestion events and improve utiliza-
tion for flows with large congestion windows. The congestion
window increase becomes increasingly aggressive as the time
since the next expected congestion event increases. The in-
crease is capped at 50% increase over a round-trip time. Slow
start for comparison has a 100% increase.

Capacity estimation and acceleration algorithm. One can
use a capacity estimation algorithm that rely on packet bursts
or chirps to estimate the new available capacity. However,
when there are multiple competing flows there is a significant
chance they miss each other and cause a queue overshoot.

Capacity estimation algorithms struggle to estimate capac-
ity over discontinuous links with aggregation such as WiFi.
This seriously reduce the usability in todays Internet.

Delay preserving scalable additive increase. A difference
between a flow in the start-up phase and a flow entering open-
loop phase after steady state is that the latter has a lower
limit on the networks capacity. It knows that the current
sending rate is lower than the available rate at the bottleneck.
This can be used to calculate how fast the congestion window
can be increased without causing a unacceptable amount of
delay.

3.3 Algorithms put together

We have the following variables:

Draft: Limited Distribution only

Variable Name/Value Description
C cycle_counter Number of rtts since last reaction
1 cycle_increase Number of increases since last reaction
1, cycle_avg Average of 1
I, cycle_mad Average Mean absolute deviation of 1
a scale Scale to apply to Al
Q 1000 Acceptable queue overshoot in us
R srtt_us srtt
w snd_cwnd Congestion window
g 1/16 EWMA factor for I, I,
The initialization of the variables follows:
C+0
I1+0
I, +0
Iy <0

At the completion of a whole round-trip time the values
are updated as follows:

C+—C+1

I+ 1I+a

a1

If the state is deemed to be open-loop the scale is updated
as follows. The condition for being in open-loop state is that
C>1Ia+2xIn.

if (C > 1I,+2x%1,) then

a (W*}g)*Q

end if

The scale is subtracted from the current congestion window
to make it so that the window used has been tested. Using

09 Aug 2022

Version 00A

TR-UIOJM-2022-002

the current window would include a round of scaled additive
increase without feedback confirming it.

Every time there is a congestion reaction the averages are
updated and counters reset:

Im < L —Imxg+|Ia—I|xg

Io« I, —I,xg+1Ixg

C+0

I1+0

3.3.1 Determining the current state. The state is deemed
to be transient if C > I,+2%1,,. In other words if the number
of round-trip times is greater than the average number of
increases done in-between reductions pluss two times the
variation of increases. The use of increases instead of number
of round-trip times avoids issues where a higher scale becomes
a new steady state. It makes it more difficult for a flow that
is in transient state and has a high scale to stay there once a
reaction occurs. It improves sensitivity.

The choice of multiplying I,,, by 2 is to approximate 95%
confidence value for normally distributed random variable.
However, it is really arbitrary.

3.3.2 Dynamic change to additive increase. To further de-
scribe this part of the algorithm we define the following
variables.

ds Inter sending time of packets at current sending
rate.
dc Serialization delay at the bottleneck.

When we are in transient state we adjust the scale accord-
ing to the current sending rate and the queue delay target.
We assume that ¢ < dg (higher capacity than sending rate).

First, sending inter-packet gap is computed.

R
W —a (1)

Then the scale that satisfies the max queue delay target is
computed. Again, this can be a fraction of the RTT instead
of a constant delay. 0

=5 (2)
s

The scale is then applied to the additive increase. If Q

is set to a fraction of the RTT the result is multiplicative

increase as the RTT cancels and the fraction is multiplied by
w.

ds =

a

Are multiple flows more aggressive? No, they ensure the
same queueing delay target (at least in theory).

Assume that we have N competing flows over a network
with a capacity of C capacity and R RTT. We have that each
flow should have a window and sending rate as follows.

0s =0c *x N (3)
W RTT @
0s

Then one of the flows terminate, and the remaining flows
start to work their way to the new equal share. At the point
that the flow terminates there are N-1 flows still sending with
the same inter-packet gap, dc * N. Assume for now that the

3 of 6

TR-UIOJM-2022-002

_—
L bbr2 ‘
& 80 prague w/both
s pogue |
= e
=60
-
2 !
= |
5 40 Ay L
g
= 20 S S
} [
45
bbr2 ‘
10 1 prague w/both
- prague
Z 35
= 30
=
]
20 411

60 65 70 K 80 85 90 95 100

Time [S]

Figure 1: 5 flows exiting staggered. RTT and capac-
ity is 15ms and 100mbps. Each algorithm run sepa-
rately. AQM is step at 3ms. Acceleration gives large
improvement when given time and condition to kick
in.

flows switch to transient state immediately. Each flow will
adjust their additive increase to (W — a)/(dc * N) and the
aggregate increase becomes

N-1 @

T
N dc

So depending on what N is the aggregate increase is in the
range of [0.5,1) %. However, it can never be greater than
Q
%)

Delayed feedback. We have assumed that the delay in feed-
back is non-existent, which is untrue. The consequence is
that the maximum delay target will be violated by a small
amount. The delay cannot be removed, so compensating for
it by setting the target a bit lower might be necessary.

which ensures that the latency target is kept.

Increase favors flows with larger window. Because the scale
depends on the current congestion window there can be un-
equal acceleration for competing flows. Flows with lower
round-trip time will more quickly detect a open-loop transi-
tion and claim spare capacity faster than a competing flow
with a longer round-trip time. This is not an issue as the
flows will converge to steady state once full utilization has
been reached.

4 EVALUATION

In this section we evaluate how the algorithm performs in a
range of scenarios. If nothing else is specified we use a delay
target, @, of 1 millisecond. In the experiments dctcp-pattern
will be regular DCTCP, and dctcp-fast-c will be DCTCP
with the algorithm described above.

4 of 6 Version 00A

Draft: Limited Distribution only

Acceleration Mode

—_—
bbr2
prague w/both

prague

-3

[
|

Throughput [Mbps]

bbr2
40 prague w/both

prague

RT

15.0 15.2 15.4 15.6 15.8 16.0

Time [S]

Figure 2: Single flow, each algorithm run separately.
15ms RTT and 100mbps capacity. Capacity halved
to 50mbps. AQM is step at 3ms. Overload mode’s
rapid decrease sometimes lead to under-utilization
that can be recovered by acceleration mode.

4.1 Staggered flows

Figure 1 shows 5 flows exiting one after another, leaving spare
capacity for the other to claim. When the capacity difference
is great enough for acceleration mode to kick in it reaches
full utilization faster.

4.2 Rate decrease

This experiment is simply to cut the available capacity to
a fraction of the current capacity. Capacity is reduced by
changing the link rate.

Figure 2 shows how throughput and queue length changes
when available capacity decreases from 100mbps to 50mbps.
BBRv2’s acceleration is overly aggressive.

Figure 3 shows how throughput and queue length changes
when available capacity decreases from 100mbps to 80mbps.
The overload mode reduces excess queueing delay rapidly,
but it comes at the cost of under-utilization. However, accel-
eration mode kicks in and reclaim the available capacity.

4.3 Rate oscillation

Figure 4 shows how different algorithm handle an available
capacity change. Acceleration mode significantly improves ac-
celeration when more capacity becomes available. Even when
system-relates noise causes a congestion-unrelated spike and
premature overload reduction around 43 seconds acceleration
mode recovers quickly.

Figure 5

09 Aug 2022

Acceleration Mode

bbr2
prague w/both

-3

prague

i~

=y

Throughput [Mbps]

45

bbr2

10 prague w/both

prague

(mj)

= 30

RT

]

20

15.0 15.2 15.4 15.6 15.8 16.0

Time [S]

Figure 3: Single flow, each algorithm run separately.

15ms RTT and 100mbps capacity. Capacity reduced
to 80mbps. AQM is step at 3ms. Overload mode’s
rapid decrease sometimes lead to under-utilization
that can be recovered by acceleration mode.

175 bbi2
prague w/both

150 4

prague

Throughput [Mbps]

bbr2
104 prague w/both

prague

15 20 25 30 35 10 15

Time [S]

Figure 4: Single flow, each algorithm run separately.

15ms RTT and 200mbps capacity. Capacity periodi-
cally changed to 100mbps. AQM is step at 3ms. Ac-
celeration mode recovers capacity rapidly without
overshooting excessively.

5 FUTURE WORK
6 DISCUSSION

6.1 A constant delay or a proportion of
RTT?

A flow has a base round-trip time that it cannot reduced.

The utility that a flow has for a user running a time-sensitive

09 Aug 2022

Draft: Limited Distribution only

TR-UIOJM-2022-002

A
bbr2
prague w/both

prague

7y
2
2
=]
=,
=
2, 100
8
E
2
5

50

bbr2
prague w/both

prague

15 20 25 30 35 40 15

Time [S]

Figure 5: Single flow, each algorithm run separately.
15ms RTT and 200mbps capacity. Capacity periodi-
cally changed to 20mbps. AQM is step at 3ms. Ac-
celeration mode recovers capacity rapidly without
overshooting excessively.

application is usually s-shaped as a function of round-trip
time. Using this one can say that as long as the change in
queueing delay resulting from a more aggressive increase does
not decrease the utility significant the increase is acceptable.
There are multiple problems with such an argument. Looking
at the utility from a single flow is insufficient because there
might be multiple flows from the same user for different
applications. The utility-function depends on the application
using the TCP transfer. There is currently no API that
allows a application to tell the TCP congestion controller
how important latency is to that application or user. Such
an API should also include a users willingness to sacrifice
capacity seeking to give possible competing time-sensitive
flows low latency.

It is more important for flows with low base round-trip
time to preserve low latency than it is for flows with high
low base round-trip time. Therefor it makes sense to make
@ a proportion of the base round-trip time. However, we
have to keep in mind that the increase in round-trip time
is a increase in queuing delay. A increase in queuing delay
that is added to the different base round-trip times of all the
flows traversing that bottleneck. A single user might have a
mix of latency-sensitive and greedy connections with different
round-trip times. We wouldn’t want a 100ms base round-trip
time greedy connection impose a 25ms increase in queueing
delay if we have a time-sensitive flow with a base-round trip
time of 5ms.

Version 00A 5 of 6

TR-UIOJM-2022-002

6.2 Overload and acceleration mode
interaction

The small overshoot caused by the acceleration mode can
cause overload mode to be entered right away. This is not
necessarily such a bad thing as long as the overload mode
does not increase its reduction over subsequent overshoots
by the acceleration mode.

There are two key design points of the algorithms that pre-
vent oscillatory behaviour. The first is that the acceleration
mode measure the number of increases, not the number of
round-trip times, between congestion events for finding an
appropriate threshold for mode change. The second is that
the overload mode moves gmaqz towards the queueing delayed
cause by the acceleration mode, making the threshold greater
for each cycle of interaction.

6.3 Flow-rate fairness

If two flows enter acceleration mode with different sending
rates the one with the highest sending rate will accelerate
fastest in acceleration mode. This is not an issue because (1)
there is no feasible way for each flow to know of the other
flow, and (2) a flow with higher rate has more or better
information. Competing flows will eventually converge in
congestion avoidance, which will give flow rate fairness.

A similar argument can be made for different reduction
rates for competing flows with different round-trip times. A
flow with a small round-trip time should react as fast as it
can because (1) it cannot know whether it is competing with
other flows, and (2) has more or better information about
congestion.

7 CONCLUSION

We have demonstrated that TCP Prague’s and other scalable
congestion control’s acceleration to fully utilize a underuti-
lized network can be greatly improved with little risk.

REFERENCES
A MACHINE CONFIGURATION

The testbed consist of four machines and we will call them
clients, server and aqm.

Both the clients and the server use a custom 5.10.31 Linux
kernel. The kernel is 5.10.31-3cc3851880al-prague-37 and can
be found at the following page https://github.com/L4STeam/
linux/releases/tag/testing-build. The clients and the server
use 18.04.04. The aqm runs Ubuntu 16.04.7 with a custom
5.5.0 Linux kernel which can be found at https://github.com/

JoakimMisund/net-next/tree/series_14s_20210421-1025-pc. Each

machine has a 1 Gigabit Intel 1350 Gigabit network card.
The clients and the server has a 2-port version of the card,
while the agm has a 4-port version of the card. The driver is
igh and the firmware version is 1.63.

The machines are connected in serial and through a switch.
The switch makes it possible to have management traffic be-
tween the machines without interfering with the experimental
traffic.

6 of 6 Version 00A

Draft: Limited Distribution only

Acceleration Mode

Delay and rate limiting is added by tc-netem and tc-htb
respectively on the agm machine. To avoid timer related
issues that we have previously experienced using tc-htb and
tc-netem we set the cpu scaling governor to performance and
the highest C-state to 0 on every cpu on the aqm. We sat the
burst and cburst of tc-htb to 3080 because we experienced
persistent underutilization during some runs for different
configurations when it was set to 1. Delay is applied on the
forwarding path and the reverse path, i.e. a round-trip time
of 10ms implies 5ms in forwarding path and 5ms is reverse
path.

Table 1 and table 2 shows sysctl and ethtool configuration,
respectively.

Variable name Value
tcp_no_metrics_save 1
tcp_low_latency 1
tcp-autocorking 0
tep_fastopen 0
tep-fin_timeout 5
tcp_tw_reuse 1
tcp_ecn 1
tcp-ecn_fallback 0
tcp-max_syn_backlog 2048
somaxconn 2048
netdev_max_backlog 2000
rmem_max 8388608
rmem_default 8388608
wmem_max 8388608
wmem_default 8388608

ip_local_port_range ”20000 610007

tcp_rmem 78388608 8388608 83886087
tcp-wmem 78388608 8388608 8388608”
tcp-mem 78388608 8388608 8388608”

Table 1: Sysctl variables and their values. Others are
set to default values.

Configuration name Value

IX-usecs 0
tx-usecs 0
gso off
tso off
gro off
tx-gso-partial off
sg off
autoneg/tx/rx off

Table 2: Interface configuration on all machines, set
through ethtool.

09 Aug 2022

https://github.com/L4STeam/linux/releases/tag/testing-build
https://github.com/L4STeam/linux/releases/tag/testing-build
https://github.com/JoakimMisund/net-next/tree/series_l4s_20210421-1025-pc
https://github.com/JoakimMisund/net-next/tree/series_l4s_20210421-1025-pc

