
CoDel
Caching control law state: Linux bugs

Bob Briscoe
Oct 2021

Summary of codel_dequeue() logic in Linux
(excluding ECN logic)

bool _drop = should_drop()

if (dropping)
if (!_drop)

dropping = false

else
if (now > drop_next)

while (dropping &&
 now > drop_next)

count++

Newton_step()

drop_func()

if (!should_drop())

 dropping = false

else

 drop_next = control_law()

else
if (_drop)

drop_func() // while (now>drop_next)?

_drop = should_drop() // redundant?

dropping = true

_delta = count – lastcount

if ((_delta > 1) && // >0 ?
 (now–drop_next < 16*interval))
count = _delta // count--; ?

Newton_step()

else
count = 1

rec_inv_sqrt = FFFF

lastcount = count

drop_next = control_law()

more efficient structure:
if (_drop) {

if (dropping) {…}
} else {

dropping = false;}
}

CoDel: potential problems

count-caching bugs in Linux
• count wrongly set to _delta on re-entering dropping mode

and if (_delta > 1) should be if (_delta > 0)
• AFAICT, when CoDel re-enters dropping mode:
• if (count increased when last in dropping mode AND it's been <1.6s since last drop)

• it should just use the count naturally stored when it last left dropping mode
– but on this line, CoDel (code and RFC) inexplicably sets: count = (count – lastcount);
– That is, the increase in count during the last period in dropping mode

(whether initialized to 1 or set to the cached value)
– The problem: imagine entering dropping mode 4x in succession, and each time count reaches

the value on the right (the clock icon ... indicates unnecessary delay):

• Only an increase proves count is fresh so, instead of count = delta; I suggest:
count--; and I also suggest if (delay > 0)
which is what the code effectively does the first time after count=1

delta = count - lastcount count lastcount ... count
1 1 ... 12

11 11 11 ... 14
3 3 3 15
1 1 1 15

Caching control law state:
bug symptoms
● Experiment:

● fq_codel default settings, v5.14.11 kernel
● 40Mb/s link; 42Mb/s unresponsive flow
● Slight overload used to cut run time of expt

– and to stay within buffer, without confusion of tail drop

● Time series plots of salient metrics here:
● TCP smoothed RTT
● CoDel queue depth
● drop prob. averaged over 80ms slots

● For unresponsive traffic,
● when CoDel exits dropping mode, count is huge

● When it re-enters dropping mode
● it forgets all that work reaching a huge count,

'cos it sets count to the last _delta, not the last count
● search for count starts nearly from scratch again

● Summary:
● >10s to get under control, even for only 40Mb/s and 5% overload
● then forgets the answer and repeats

● Thx to Asad Ahmed for running the tests

addendum 26-Feb-2022

count caching bug – in context
● Overshadowed by a much bigger bug (design flaw)...
● CoDel's "control" law doesn't measure the queue it is controlling

– takes hundreds of seconds to bring an unresponsive flow under control
● so sweating over the count caching bug would be a distraction

– 12-Nov-2013: I reported the bigger design flaw to Kathie & Van
● cc'd my posting to aqm@ietf.org

– 07-Jun-2015: Toke confirmed my analysis empirically (see same thread). Plot paste below
● also see: source plot, expt definition

– 30-Sep-2015: Dave Taht (still same thread):
"cake uses a better curve for CoDel
but we still need to do more testing
in the lab"

– Misses the point
● CAKE is faster but still extremely slow
● CAKE's control law still never measures

the queue it is meant to be controlling.

