CoDel

Caching control law state: Linux bugs

Bob Briscoe
Oct 2021

Summary of codel dequeue () logic in Linux
(excluding ECN logic)

more efficient structure:
if (_drop) {
if) {.}

} else {
= false;}
bool drop = should drop() }
£ _ - else
1 .
() if (_drop)
if (! _drop) drop func () // while (now>drop next) ?
= false _drop = should drop () // redundant-?
else = true
if (now > drop next) _delta = count - lastcount
now > drop next) (now—drop next < lé*interval))
Newton step ()
Newton step () -
drop func() else
. N count = 1
if (!should drop()) .
- rec 1nv sgrt = FFFF
= false - =

lastcount = count
else

= 11
drop next = control law () drop next control law()

CoDel: potential problems
count-caching bugs in Linux

* count wrongly set to delta on re-entering dropping mode
and if (delta > 1) shouldbe if (delta > 0)
* AFAICT, when CoDel re-enters dropping mode:
* if (count increased when last in dropping mode AND it's been <1.6s since last drop)

* it should just use the count naturally stored when it last left dropping mode
— but on this line, CoDel (code and RFC) inexplicably sets: count = (count - lastcount);

— That is, the increase in count during the last period in dropping mode
(whether initialized to 1 or set to the cached value)

— The problem: imagine entering dropping mode 4x in succession, and each time count reaches

the value on the right (the clock icon . . . & indicates unnecessary delay):
delta = count - lastcount count lastcount ... count
1 1 ... 12
11 11 11 .. 14
3 3 3 Y G 15
1 1 1 LA 15

* Only an increase proves count is fresh so, instead of count = delta; I suggest:
count--; and I also suggest if (delay > 0)
which is what the code effectively does the first time after count=1

400000 {
. 350000
Caching control law state: :z..
E‘ 250000
bug symptoms
E
2 1500004
 Experiment: B
* fq codel default settings, v5.14.11 kernel 20000
* 40Mb/s link; 42Mb/s unresponsive flow o
* Slight overload used to cut run time of expt 350000
- and to stay within buffer, without confusion of tail drop 300000 1
* Time series plots of salient metrics here: = 2500001 1
* TCP smoothed RTT Ezooooo,] |
. 8 ‘ CoDel CoDel
CoDel queue depth 2 150000
* drop prob. averaged over 80ms slots 3

1000003/ = -
For unresponsive traffic,

5000014
* when CoDel exits dropping mode, count is huge

When it re-enters dropping mode ‘

« it forgets all that work reaching a huge count, o 0.150
'cos it sets count to the last delta, not the last count & 0.125 # ' ﬁ
» search for count starts nearly from scratch again go 1001
* Summary: £ 0.0751 : =
* >10s to get under control, even for only 40Mb/s and 5% overload © 0050
* then forgets the answer and repeats g
£ 0.025
* Thx to Asad Ahmed for running the tests

00003

addendum 26-Feb-2022
count caching bug — 1n context

Overshadowed by a much bigger bug (design flaw)...

CoDel's "control" law doesn't measure the queue it is controlling

— takes hundreds of seconds to bring an unresponsive flow under control
* so sweating over the count caching bug would be a distraction
— 12-Nov-2013: I reported the bigger design flaw to Kathie & Van
* cc'd my posting to agm@ietf.org
— 07-Jun-2015: Toke confirmed my analysis empirically (see same thread). Plot paste below

* also see: source plot, expt definition 025 CoDel drop probability over time
= CoDel 1Mbit, slope 0.004777
~ 30-Sep-2015: Dave Taht (still same thread): — e
"Cake uses a better Curve for CODel 0.20 = CoDel 1Mbit I=500ms, slope 0.019093

= CoDel 2Mbit 1=500ms, slope 0.009545
CaDel 10Mbit 1=500ms, slope 0.002135

but we still need to do more testing
in the lab"

— Misses the point

window

o
=]

* CAKE is faster but still extremely slow

* CAKE's control law still never measures
the queue it is meant to be controlling.

Fraction of pkts dropped (2s

=
=1
=]

0oon. =

