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Abstract

An active queue management (AQM) algorithm drops
packets at an early stage in the growth of a queue,
to prevent a capacity-seeking sender (e.g. TCP) from
keeping the queue full. An AQM can mark instead of
dropping packets if they indicate support for explicit
congestion notification (ECN [RFB01]). Two modern
AQMs (PIE [PNB+15] and CoDel [NJ12]) are designed
to drop packets in order to keep queuing delay to a
target value as load varies.

This memo uses Curvy RED and an idealised model of

TCP traffic to explain why dropping packets to keep

delay constant is a bad idea. However, it is a good idea

to use ECN marking to keep delay constant. A corol-

lary is that the dropping and marking behaviours of an

AQM should be different. Recently, the requirement of

the ECN standard [RFB01] that ECN must be treated

the same as drop has been questioned. The insight that

AQM behaviour for drop and for ECN should have dif-

ferent goals proves that this doubt is justified.

1 Curvy RED

Curvy RED is an active queue management
(AQM) algorithm that is both a simplification
and a a generalisation of Random Early Detection
(RED [FJ93]). Two examples are shown in Fig-
ure 1 and Figure 2 shows a close-up of their normal
operating regions.

The general formula for the drop probability, p, of
a Curvy RED AQM is:

p =

(
dq
Dq

)u

, (1)

where dq is the averaged1 queuing delay and the
two parameters are:

u the exponent (cUrviness) of the AQM;
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1The queuing delay used by Curvy RED is averaged, but
this memo is only concerned with steady-state conditions,
so averaging is not explained or discussed.
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Figure 1: Two Example Curvy RED algorithms

Dq the slope of the AQM, or the queue delay where
the curve hits 100%.

The slopes Dq of the curves in Figure 1 are arranged
so that they both pass through (20 ms, 2%), which
we call the design point. All the curves in Fig-
ure 2 and Figure 3 are arranged to pass through
this same operating point, which makes them com-
parable over the operating region of about 0–40 ms
either side of this point, shown in Figure 2.

In the following, the dependence of both queuing
delay and drop on load will be derived, assuming
the load consists solely of equal TCP Reno flows.

The load on a link is proportional to the number
of simultaneous flows being transmitted, n. If the
capacity of the link (which may vary) is X and the
bit-rate of each flow is x, then:

n =
X

x
. (2)

The rate of a TCP flow depends on round trip
delay, dR and drop probability, p. An accu-
rate formula has been derived, but the simplest
model [MSMO97] will suffice for the purpose of in-
sight:

x =
l

dR

√
3

2p
, (3)

where l is the average packet size.
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Figure 2: Normal Operating Region of The Same
Two Example Curvy RED AQM algorithms

The round trip time, dR consists of the base RTT
DR plus queuing delay dq, such that:

dR = DR + dq (4)

Substituting Equation 3 Equation 4 in Equation 2:

n =
X(DR + dq)

l

√
2p

3

= K
DR + dq

Ds

√
p, (5)

where constant K =
√

2/3 and Ds = l/X, which is
the serialisation delay for an average sized packet,
which is constant while capacity is constant.

By substituting from Equation 1 into Equation 5,
the number of flows can be given as a function of
either queueing delay dq or loss probability, p:

n = K
(DR + dq)

Ds

(
dq
Dq

)u/2

(6)

n = K
(DR + Dq.p

1/u)p1/2

Ds
(7)

Equation 6 & Equation 6 are plotted against nor-
malised load in Figure 3 for an example set of
Curvy RED algorithms with curviness parameters
u = 1, 2, 4, 8,∞, with base RTT DR = 20 ms. It
can be seen that as the curviness parameter is in-
creased, the AQM pushes harder against growth of
queuing delay as load increases. However, given
TCP is utilising the same capacity, it has to cause
more loss (right axis) if it cannot cause more queu-
ing delay (left axis).

In the extreme, infinite curviness represents the in-
tent of AQMs such as CoDel and PIE that aim to
clamp queueing delay to a target value (the black
horizontal straight line). As a consequence, the

TCP flows force loss to rise more quickly with load
(the black dashed line).

Normalised load is plotted on the horizontal axis to
make the plots independent of capacity or average
packet size. Normalised load has units of ms and
is defined as L = nDs/K, with Ds in units of ms.
As an example, if X = 40 Mb/s, l = 700B, then for
one Reno flow, L = 700 ∗ 8/40M/

√
2/3 = 0.17 ms.

Then for these example values, L = 1 on the hori-
zontal axis represents 1/0.17 = 5.8 flows.

2 Conclusions & Further Work

The curviness parameter of Curvy RED can be con-
sidered to represent the operator’s policy for the
tradeoff between delay and loss whenever load ex-
ceeds the intended design point. Conversely, PIE
and RED embody a hard-coded policy, which dic-
tates that holding down delay is paramount, at the
expense of more loss.

Given losses from short interactive flows (e.g. Web)
cause considerable delay to session completion, sac-
rificing loss for delay is unlikely to be the optimal
policy to minimise delay. Also, it may lead real-
time applications such as conversational video and
VoIP to degrade or fail sooner as load increases. Al-
lowing some additional flex in queueing delay with
consequently less increase in loss is likely to give
more favourable performance for a mix of Internet
applications.

In addition, when load is below the design point,
both PIE and CoDel tend to allow the queue to
grow towards the target delay. Whereas Curvy
RED gives lower queuing delay when load is light.

Another insight that can be drawn from this analy-
sis, is that the dilemma in ?? disappears with ECN.
For ECN, the AQM can mark packets without in-
troducing any impairment. There is therefore no
downside to clamping down queuing delay for ECN
packets. This further supports the idea that ECN
should not be treated equivalently to drop.

We intend to conduct experiments to give advice on
a compromise level of curviness that best protects
a range of delay-sensitive and loss-sensitive appli-
cations during high load. Although Curvy RED
seems to be a useful AQM, we are not necessarily
recommending it here. We are merely using the
concept of curviness to draw insights.
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Figure 3: Dilemma between Two Impairments: Delay and Loss against Normalised Load; for a Set of
Curvy RED Algorithms with Increasing Curviness
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