
Insights from Curvy Random Early Detection (RED)

Bob Briscoe∗

08 Jun 2015

Abstract

Active queue management (AQM) drops packets early
in the growth of a queue, to prevent a capacity-seeking
sender (e.g. TCP) from keeping the buffer full. An
AQM can mark instead of dropping packets if they
indicate support for explicit congestion notification
(ECN [RFB01]). Two modern AQMs (PIE [PNB+15]
and CoDel [NJ12]) are designed to keep queuing delay
to a target by dropping packets as load varies.

This memo uses Curvy RED and an idealised but suf-
ficient model of TCP traffic to explain why attempting
to keep delay constant is a bad idea, because it requires
excessively high drop at high loads. This high drop
itself takes over from queuing delay as the dominant
cause of delay, particularly for short flows. A link is
better able to preserve reasonable performance at high
load if the delay target is softened into a curve rather
than a hard cap.

Another surprising corollary of this analysis concerns
cases where a bottleneck is highly aggregated. Al-
though aggregation reduces queue variation, if the tar-
get queuing delay of the AQM at that bottleneck is re-
duced to take advantage of this aggregation, TCP will
still increase the loss level because of the reduction in
round trip time. The only way to resolve this dilemma
is to overprovision (a formula is provided).

Nonetheless, for traffic with ECN enabled, there is no

harm in an AQM holding queuing delay constant or

configuring an AQM to take advantage of any reduced

delay due to aggregation without over-provisioning. A

corollary is that the dropping and marking behaviours

of an AQM should be different. Recently, the require-

ment of the ECN standard [RFB01] that ECN must be

treated the same as drop has been questioned. The in-

sight that the goals of an AQM for drop and for ECN

should be different proves that this doubt is justified.

1 Curvy RED

Curvy RED is an active queue management
(AQM) algorithm that is both a simplification
and a a generalisation of Random Early Detection

∗ietf@bobbriscoe.net, BT Research & Technology,
B54/77, Adastral Park, Martlesham Heath, Ipswich, IP5
3RE, UK

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200

queue delay, dq [ms]

drop probability, p

Curvy RED^2

drop probability, p

Curvy RED^4

Figure 1: Two Example Curvy RED algorithms

(RED [FJ93]). Two examples are shown in Fig-
ure 1 and Figure 2 shows a close-up of their normal
operating regions.

The drop probability, p, of a Curvy RED AQM is:

p =

(
dq
Dq

)u

, (1)

where dq is averaged queue delay and:

u the exponent (cUrviness) of the AQM;

Dq the slope of the AQM, i.e. dq where p hits 100%.

The queuing delay used by Curvy RED is averaged,
but averaging is not relevant to this memo, which
is only concerned with insights from steady-state
conditions.

The slopes Dq of the curves in Figure 1 are arranged
so that they both pass through (20 ms, 2%), which
we call the design point. All the curves in Fig-
ure 2 and Figure 3 are arranged to pass through
this same operating point, which makes them com-
parable over the operating region of about 0–40 ms
either side of this point, shown in Figure 2.

In the following, the dependence of both queuing
delay and drop on load will be derived, assuming
the load consists solely of equal TCP Reno flows.

The load on a link is proportional to the number
of simultaneous flows being transmitted, n. If the

Version Draft 00D 1 of 5

mailto:ietf@bobbriscoe.net


TR-TUB8-2015-003 Insights from Curvy RED

0%

1%

2%

3%

4%

5%

0 10 20 30 40

queue delay, dq [ms]

drop probability, p

Curvy RED^2

drop probability, p

Curvy RED^4

Figure 2: Usual Operating Region of The Same
Two Example Curvy RED AQM algorithms

capacity of the link (which may vary) is X and the
bit-rate of each flow is x, then:

n =
X

x
. (2)

The rate of a TCP flow depends on round trip
delay, dR and drop probability, p. An accu-
rate formula has been derived, but the simplest
model [MSMO97] will suffice for insight purposes:

x =
s

dR

√
3

2p
, (3)

where s is the average packet size.

The round trip time, dR consists of the base RTT
DR plus queuing delay dq, such that:

dR = DR + dq (4)

Substituting Equation 3 Equation 4 in Equation 2:

n =
X(DR + dq)

s

√
2p

3

=
DR + dq
KDs

√
p, (5)

where constant K =
√

3/2 and Ds = s/X, which is
the serialisation delay for an average sized packet,
which is constant while capacity is constant.

By substituting from Equation 1 into Equation 5,
the number of flows can be given as a function of
either queueing delay dq or loss probability, p:

n =
(DR + dq)

KDs

(
dq
Dq

)u/2

(6)

n =
(DR + Dq.p

1/u)p1/2

KDs
(7)

Equation 6 & Equation 6 are plotted against nor-
malised load in Figure 3 for an example set of

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40

d
ro

p
 p

ro
b

a
b

il
it

y
, 
p

Q
u

eu
in

g
 D

e
la

y
, 
d

q
 [

m
s]

Normalised Load L [ms]

dq, Reno & RED^1

dq, Reno & RED^2

dq, Reno & RED^4

dq, Reno & RED^8

dq, target (PIE/CoDel)

p, Reno & target dq

p, Reno & RED^8

p, Reno & RED^4

p, Reno & RED^2

p, Reno & RED^1

Figure 3: Dilemma between Two Impairments: De-
lay and Loss against Normalised Load; for a Set of
Curvy RED Algorithms with Increasing Curviness

Curvy RED algorithms with curviness parameters
u = 1, 2, 4, 8,∞, with base RTT DR = 20 ms.
u = ∞ represents an algorithm like PIE or CoDel
that attempts to clamp queuing delay to a target
value whatever the load. Normalised load L is used
as the horizontal axis, because it is proportional to
the number of flows but scales with link capacity
and packet size, by the following relationship:

L = KDsn, (8)

where KDs is a constant, at least as long as link
capacity and average packet size is constant.

It can be seen that as the curviness parameter is
increased, the AQM pushes harder against growth
of queuing delay as load increases. However, given
TCP is utilising the same capacity, it has to cause
more loss (right axis) if it cannot cause more queu-
ing delay (left axis).

In the extreme, infinite curviness represents the in-
tent of AQMs such as CoDel and PIE that aim to
clamp queueing delay to a target value (the black
horizontal straight line). As a consequence, the
TCP flows force loss to rise more quickly with load
(the black dashed line).

Normalised load is plotted on the horizontal axis to
make the plots independent of capacity or average
packet size. Normalised load has units of time and
is defined as L = nKDs, with Ds the serialisation
delay of an average packet.

As an example, if link capacity X = 40 Mb/s and
average packet size s = 820B, then for one Reno
flow, L = 820∗8∗

√
3/2/40M = 0.20 ms. Thus, for

these example values, L = 1 on the horizontal axis
represents 1/0.20 = 5 flows. For a 10× faster link
of 400 Mb/s, L = 1 on the horizontal axis would
represent 10× more, i.e. 50 flows.

2 of 5 Version Draft 00D



Insights from Curvy RED TR-TUB8-2015-003

2 Invariance with Capacity

2.1 Does Flow Aggregation Increase
or Decrease the Queue?

There used to be a rule of thumb that a router
buffer should be sized (in bytes) for the band-
width delay product. Then, in 2004 Appenzeller
et al. [AKM04, GM06] pointed out that for large
aggregates BDP/

√
n would be sufficient. This ap-

plies only if TCP’s sawteeth are desynchronized so
that the variance of all the sawteeth does not grow
linearly with the number of flows, but instead with
the square root (by the Central Limit Theorem).

A link for 100× more flows will typically be sized
with 100× more capacity, so the queue will drain
100× faster. Therefore, if the buffer is sized for
BDP/

√
n, queuing delay will be

√
n × (= 10×)

lower.

Note that this square-root law does not apply in-
definitely; only for medium levels of aggregation.
Once the queue size has reduced to about half a
dozen packets, it does not get any smaller with in-
creased aggregation [GM06].

In the previous section we showed that queuing de-
lay grows with number of flows. How does this
reconcile with the idea that queuing delay shrinks
as more flows are aggregated?

There is no paradox; the two ideas are recon-
ciled by noting that queuing delay only shrinks
when the number of flows grows and more capac-
ity is added to accommodate them, which occurs
at the timescale of provisioning, not usually at the
timescale of queue control.

Therefore, for a specific link with a known capac-
ity, the previous section has explained that an AQM
should temporarily accommodate more flows by al-
lowing a little more queuing delay. But, if a certain
number of flows is expected permanently, the link
has to be sized accordingly.

This is why we have plotted queuing delay and drop
against normalised load L in Figure 3. Normalised
load stays the same if a link is sized proportionate
to the expected number of flows. The explanation
is as follows.

Our definition of normalised load is L = nKDs. So
if the serialisation delay Ds is held constant (imply-
ing link capacity is constant), then increasing n in-
creases L. But normally a large permanent increase
in n would be accommodated by more link capacity,
implying lower serialisation delay Ds. For instance,
for 100× more flows, link capacity would be 100×
larger, Ds would therefore be 100× smaller, so nor-
malised load would be unchanged.

Note that our definition of normalised load also
factors out a change in average packet size. For
a given capacity and number of flows, increasing
the packet size increases the normalised load. It
may be counter-intuitive that the same bit-rate in
larger packets will change normalised load. This is
an artefact of the window-based design of the TCP
Reno algorithm (and most other TCP variants),
which behaves as if a link is more congested if it
has to reduce the packet rate, even if it only had
to because it increased packet sizes and its bit-rate
did not change.

2.2 AQM Configuration and Scale

AQM configuration should be invariant with link
capacity, but it will need to change in environments
where the expected range of RTTs is significantly
different. Therefore, AQM configurations in a data
centre will be different, not because of high link
capacities, but because of shorter RTTs.

The AQM should be configured against a design
point, such as dq = 20 ms, p = 2%. The operator
will set this design point where delay and loss start
to become troublesome for the most sensitive ap-
plications (e.g. interactive voice). By setting the
AQM to pass through this point, it will ensure a
good compromise between delay and loss. Then the
most sensitive application will survive at the high-
est possible load, rather than holding one impair-
ment unnecessarily low so that the other is pushed
so high that it breaks the sensitive app.

The curviness of the AQM depends on the domi-
nant congestion control regime (this memo is writ-
ten assuming TCP Reno is dominant). For a par-
ticular dominant congestion control, curviness de-
pends only on the best compromise to resolve the
dilemma in Figure 3, and can otherwise be assumed
constant.

Further research is needed to understand how best
to average the queue length, and how best to con-
figure the averaging parameter.

Having determined an AQM configuration as
above, it will be applicable for all link rates as
long as expected round trip times are unchanged.
If there are too many flows for the capacity, no
amount of AQM configuration will help. Capacity
needs to be appropriately upgraded. The following
formula can be used to determine capacity X given
the expected number of flows n and expected aver-
age base RTT DR, where d∗q and p∗ are the values
of queuing delay and drop at the design point, as
determined above.

K
ns

X
= (DR + d∗q)

√
p∗.

Version Draft 00D 3 of 5



TR-TUB8-2015-003 Insights from Curvy RED

Alternatively, it can be used to determine the num-
ber of flows n that a particular capacity X can rea-
sonably be expected to support. For convenience,
serialisation delay has been broken down into its
component parts, Ds = s/X.

For highly aggregated links, the queuing delay at
the design point can be reduced proportionate to
1/
√
n without compromising utilisation. However,

the dilemma in Figure 3 still applies, so loss proba-
bility will increase. The only way to take advantage
of the 1/

√
n reduction in queuing delay due to ag-

gregation without increasing loss is to over-provide
capacity, so that n/X reduces as much as (DR+d∗q)
reduces. Specifically, if the design point for queuing
delay at low aggregation, d∗q is reduced to d∗q/

√
n at

high aggregation, then the over-provisioning factor
should be:

X ′

X
=

(DR + d∗q)

(DR + d∗q/
√
n)

.

For example, if average base RTT, DR = 20ms
a link for 100× more flows could have the design
point for queuing delay reduced from 20 ms to 2 ms
while keeping the loss design point constant at 2%.
But only if aggregated capacity is over-provided by
(20 + 20)/(20 + 2) = 1.8, relative to a link designed
for 100× fewer flows.

3 Conclusions & Further Work

Although Curvy RED seems to be a useful AQM,
we are not necessarily recommending it here. We
are merely using the concept of curviness to draw
insights.

The curviness parameter of Curvy RED can be con-
sidered to represent the operator’s policy for the
tradeoff between delay and loss whenever load ex-
ceeds the intended design point. Conversely, PIE
and RED embody a hard-coded policy, which dic-
tates that holding down delay is paramount, at the
expense of more loss.

Given losses from short interactive flows (e.g. Web)
cause considerable delay to session completion, sac-
rificing loss for delay is unlikely to be the optimal
policy to minimise delay. Also, it may lead real-
time applications such as conversational video and
VoIP to degrade or fail sooner as load increases. Al-
lowing some additional flex in queueing delay with
consequently less increase in loss is likely to give
more favourable performance for a mix of Internet
applications.

In addition, when load is below the design point,
both PIE and CoDel tend to allow the queue to

grow towards the target delay. Whereas Curvy
RED gives lower queuing delay when load is light.

We intend to conduct experiments to give advice on
a compromise level of curviness that best protects
a range of delay-sensitive and loss-sensitive appli-
cations during high load.

Another insight that can be drawn from this analy-
sis is that the dilemma in Figure 3 disappears with
ECN. For ECN, the AQM can mark packets with-
out introducing any impairment. There is therefore
no downside to clamping down queuing delay for
ECN packets. This further supports the idea that
ECN should not be treated equivalently to drop.

The analysis also shows that, once a design point
defining an acceptable queuing delay and loss has
been defined, the same configuration can be used
for the AQM at any link rate, but only for a sim-
ilar RTT environment. A shallower queuing delay
configuration can be used at high aggregation, but
only if the higher loss is acceptable, or if the capac-
ity is suitably over-provisioned. Formulae for all
these configuration trade-offs have been provided.

References

[AKM04] Guido Appenzeller, Isaac Keslassy, and Nick
McKeown. Sizing Router Buffers. Proc. ACM
SIGCOMM’04, Computer Communication Re-
view, 34(4), September 2004.

[FJ93] Sally Floyd and Van Jacobson. Random Early
Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking,
1(4):397–413, August 1993.

[GM06] Yashar Ganjali and Nick McKeown. Update on
Buffer Sizing in Internet Routers. ACM SIG-
COMM Computer Communication Review, 36,
October 2006.

[MSMO97] Matthew Mathis, Jeffrey Semke, Jamshid Mah-
davi, and Teunis Ott. The Macroscopic Be-
havior of the TCP Congestion Avoidance Al-
gorithms. SIGCOMM Comput. Commun. Rev.,
27(3):67–82, 1997.

[NJ12] Kathleen Nichols and Van Jacobson. Control-
ling queue delay. ACM Queue, 10(5), May 2012.

[PNB+15] Rong Pan, Preethi Natarajan, Fred Baker, Bill
Ver Steeg, Mythili Prabhu, Chiara Piglione, Vi-
jay Subramanian, and Greg White. PIE: A
Lightweight Control Scheme To Address the
Bufferbloat Problem. Internet Draft draft-ietf-
aqm-pie-01, Internet Engineering Task Force,
March 2015. (Work in progress).

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David
Black. The Addition of Explicit Congestion No-
tification (ECN) to IP. Request for Comments
3168, Internet Engineering Task Force, Septem-
ber 2001.

4 of 5 Version Draft 00D



Insights from Curvy RED TR-TUB8-2015-003

Document history

Version Date Author Details of change

Draft 00A 19 May 2015 Bob Briscoe First Draft

Draft 00B 23 May 2015 Bob Briscoe Explained normalised load

Draft 00C 23 May 2015 Bob Briscoe Changed notation & added Aggregation section

Draft 00D 08 Jun 2015 Bob Briscoe Corrected explanation about packet size, plus minor cor-
rections

Version Draft 00D 5 of 5


	Curvy RED
	Invariance with Capacity
	Does Flow Aggregation Increase or Decrease the Queue?
	AQM Configuration and Scale

	Conclusions & Further Work
	References
	Document history

