
Disentangling Flaws in Linux DCTCP

Joakim Misund
University of Oslo
joakimmi@ifi.uio.no

Bob Briscoe
Independent

research@bobbriscoe.net

ABSTRACT
In the process of testing improvements to the
Linux DCTCP code in various scenarios, we
found different performance problems kept sur-
facing with no apparent pattern. This report
records a systematic sequence of experiments
designed to track down the causes of these prob-
lems, which were found to be due to a complex
tangle of bugs and flaws. The report also pro-
vides and evaluates solutions in each case.

1 INTRODUCTION
This report records a sequence of experiments
used to systematically track down the causes
of a number of performance problems with the
Linux implementation of DCTCP. It uncovers a
tangle of interactions between subtle bugs and
flaws in the Linux TCP stack, the DCTCP con-
gestion control algorithm (CCA) and sojourn-
based AQM marking, as shown in fig. 1. This
introduction explains how all the bugs and flaws
interrelate, with the benefit of hindsight. The
report provides solutions for each bug or flaw,
and experiments to measure the performance
of each. A roadmap to the body of the report
follows this introduction.

Proportion Rate Reduction (PRR). is an ex-
perimental algorithm that attempts to adjust
the congestion window more gradually to the
new ssthresh compared to Fast Recovery. The
claimed benefits are less time used in recovery
and fewer timeouts [8].
The Linux implementation of PRR is not as

specified in RFC6937 [11] due to a bug, which
interacts with TCP Segmentation Offloading

Figure 1: Simplified overview of the tan-
gle of interactions between bugs & flaws
described in this paper. A bug in the
Linux implementation of Proportional
Rate Reduction causes underutilization,
whatever the CCA (unless TSO is dis-
abled). When the bug is patched, it un-
masks a complex latecomer disadvantage
problem, but only for scalable CCAs such
as DCTCP. To solve this, two underly-
ing causes both have to be fixed; i) A
toggle to zero in the DCTCP sender’s
congestion averaging; ii) use of sojourn
time to measure instantaneous queue de-
lay in the AQM. Just removing the tog-
gle from DCTCP appears to mitigate the
latecomer disadvantage. However, all it
really does is set a floor to the EWMA,
which partially masks the latecomer dis-
advantage (hence it is shown in grey), but
it turns DCTCP into a classical CCA, los-
ing the benefits of low delay variation and
rapid tight congestion control.

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

(TSO) to cause the congestion window to shrink
more than intended. The consequences are lower
utilization due to each short stall being followed
by a burst when the window corrects itself, which
in turn can cause a congestion event to extend
into another round of reduction.

Note: the Linux maintainers fixed the PRR
bug after sight of an early draft of this report.
Nonetheless, we still discuss the bug, to aid
understanding of the other flaws it masked.

The problem is most apparent when a conges-
tion control algorithms (CCA) only reduces the
window a little in response to congestion, such
as in Alternative Backoff with ECN (ABE [10]),
and it is particularly apparent in DCTCP [1].
In contrast, with the large congestion response

of a traditional CCA, the troublesome code path
is avoided until towards the end of congestion
window reduction (CWR). So, the bug does af-
fect CUBIC, but less so than scalable CCAs like
DCTCP. Note that, on a loss TSO is disabled,
which lessens the impact of this bug.

Latecomer disadvantage: Unfortunately, hav-
ing fixed the PRR bug (by aligning the imple-
mentation with RFC 6937), we discovered it
had been masking another different and highly
repeatable problem—a latecomer disadvantage.
This only affects scalable CCAs, not classical.
When one long-running DCTCP flow arrives
after another, the established flow maintains a
competitive advantage—but only when TSO is
enabled (and the PRR bug has been patched).
It seems that the flows get stuck in a ‘local equi-
librium’ with unequal rates, that stops them
converging further towards equality.
The latecomer disadvantage may not be such

a concern in data centre networks for several
reasons. Firstly, as rate increases the burst size
hits its upper size limit. Secondly, NIC rates
are usually more similar to core network link
rates and so often the NIC is the bottleneck, or
the NIC is only a little faster than the bottle-
neck. Nonetheless, it is of concern for the use of
scalable congestion controls in the Internet and
other wide area networks.

We tracked down two causes of the latecomer
disadvantage, one in the sender, one in the AQM;
both of which have to be fixed to solve it:

∙ A toggle to zero in the implementation of
congestion averaging in the DCTCP CCA;
∙ Use of sojourn time to measure instanta-
neous queue delay in immediate AQMs used
for DCTCP.

Toggle to Zero: Every round trip, DCTCP
measures the ECN marking probability, and
maintains a moving average in a variable called
alpha. The value of alpha is a small fraction, and
the larger the window, the smaller the value of
alpha. Being kernel code, DCTCP represents al-
pha with an integer (with resolution of 1 in 1024).
However, it divides the change in alpha by 16
using a bit-shift, so alpha only moves when the
relative change is greater than 16/1024. In Feb
2015 it was noticed that alpha could never re-
duce to zero. So rather quirky code was added to
toggle values smaller than 16 down to zero [14],
without any mention of performance testing re-
sults. Also a truncation problem was left, where
the fraction of ECN feedback in each round-trip
was rounded down to the nearest 1/16, which al-
ways black-holed any feedback lower than 1/16.
The toggle to zero does often mask the late-

comer disadvantage, probably by jolting the
flows out of their local equilibrium so that they
converge to equal rates. However, it doesn’t work
in all scenarios, and it causes more queue varia-
tion than expected for DCTCP.
Removing the toggle to zero also appears to

partially resolve the latecomer disadvantage. How-
ever, further investigation found that this was
only because it leaves a floor to the EWMA at
16/1024, which effectively turns DCTCP into a
classical CCA with a fixed floor to its multiplica-
tive window decrease. Again, this is often enough
to jolt the flows out of their local equilibrium.
However, it loses the advantage of scalability.
As flow rate scales, the time between congestion
signals grows. Then, for instance, when capacity
becomes available, congestion signalling will go

Version 00B 2 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

quiet, but it takes a prohibitively long time to
detect that it is a real absence of congestion
when the normal recovery time is so long, like a
classical CCA. So there is no potential to modify
the CCA to fill available capacity rapidly, which
there should be with a scalable CCA.
The implementation of a derivative of DCTCP

called Prague [5, 7] fixes both these problems
(the toggle and the floor) by using a more precise
(upscaled) EWMA variable. However, with just
two long running flows and no background traf-
fic, the latecomer disadvantage becomes more
prevalent again, for the reasons tracked down
below. Briefly, the root cause of the latecomer
disadvantage is in the AQM so, unless the AQM
is fixed, a more precise EWMA no longer masks
the problem, because it no longer jolts the flows
out of their local equilibrium.

Use of sojourn time in the AQM. Superficially,
the latecomer disadvantage seems to be due to
the way Linux limits the size of TSO bursts so
that (by default) they will cause no more than
1ms of queue delay at the bottleneck. The calcu-
lation in Linux results in a burst size (in packets)
that is proportional to a flow’s congestion win-
dow (cwnd). Therefore, when a new flow starts
from a small cwnd, Linux keeps its bursts small,
but it allows pre-existing flows to produce larger
bursts, because they have a larger cwnd.
This alone should not cause the latecomer dis-

advantage. However, with scalable CCAs like
DCTCP and Prague, we found that a flow send-
ing packets in larger bursts induces a lower ECN-
marking probability at the bottleneck AQM.
The new entrant with smaller bursts then sees
proportionately higher congestion, so it can never
catch up with the flow that has established a
higher cwnd and therefore sends in larger bursts,
which the AQM perversely marks less.
In work being published separately, this per-

verse ECN marking was found to be because
the AQM applies ECN marking to packets with
greater queue delay as measured by their own
sojourn time. This biases marking onto those

packets that suffer most delay themselves, which
tend to be those behind a burst. We have im-
plemented an alternative marking scheme that
focuses marking onto those packets that cause
queuing to other packets behind them. This fo-
cuses more marking on the packets in the bursts,
and hardly any on those from smoother flows
caught behind them. The experiments in this re-
port show that this corrects the marking perver-
sity, and resolves the latecomer disadvantage.1

1.1 Roadmap
Section 2 explains the systematic approach taken
to tracking down the causes of the various per-
formance problems, and tabulates the notation
we use for the different code variants. Then each
main section of the report works through the
three main causes of performance problems:

Section 3: The PRR bug and solution;
Section 4: The latecomer disadvantage;
Section 5: Improving the DCTCP EWMA
as a potential solution to the latecomer dis-
advantage. Including removing the toggle
to zero and investigating why fixing the
truncation and rounding bugs makes the
latecomer disadvantage slightly worse than
just setting a floor to the EWMA value;

Section 6: The interaction between segmen-
tation offload at the sender and the blame-
shifting problem in AQMs using sojourn-
based marking (problems and solution).

Section 7 gives conclusions, recommendations
and proposed further work, followed by addi-
tional information in appendices:

Appendix A: Tutorial material on the de-
sign and implementation of DCTCP in Linux;

Appendix B: Full specification of the exper-
iments to support independent verification;

Appendix C: Links to diffs between the DCTCP
code and the variant in each experiment.

1However, with bursts greater than the marking thresh-
old it would be hard for any marking scheme to save
smooth traffic from being marked. So some form of burst
policing would probably also be necessary.

18 Oct 2022 3 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

Code Meaning
P PRR enabled
S TSO enabled
nn 10 or 20-bit precision of EWMA (dctcp alpha)
T EWMA toggles to zero below 16/2nn

U EWMA stored upscaled for precision (see section 5.3)

Table 1: Codes for DCTCP variants tested. Whether a letter is in capitals or lower
case respectively indicates whether the capability is used or not.

Code Description
DCTCP-PS10Tu Linux DCTCP default (Sep’22)
DCTCP-PS10tu Linux pre v4.3 DCTCP default (pre-2-Nov-2015)
DCTCP-pS20tU Linux DCTCP configured as equivalent to TCP Prague default (Sep’22)

Table 2: Example variant codes that represent particular releases.

2 METHODOLOGY
To investigate potential issues we implemented multiple variants of DCTCP and tested them in
different scenarios. The two testbeds used and their configurations are described in appendix B. The
DCTCP algorithm and key parts of the Linux implementation are described in appendix A. We
decided to use DCTCP throughout this paper because it suffers from all of the problems described.
Wherever a problem affects other CCAs such as TCP Cubic and TCP Prague they are also included.

2.1 DCTCP variants
We use the five different 2-state codes in table 1 to specify which variant of DCTCP we are talking
about at any one time.2 Some example variants are listed in table 2, with the particular release they
represent. Appendix C.1 lists all the variants used in this report, with links to online diffs of each
relative to the current DCTCP implementation.
PRR is circumvented by implementing the cong control callback introduced with BBR. This is

accompanied by updating the pacing rate and congestion reaction in the DCTCP module.

2.2 AQM variants
We have used an AQM that can mark packets using a threshold or a ramp based on instantaneous
sojourn time. Various threshold values are configured, as stated in each experiment. Sojourn time is
the time a packet has spent in the queue, i.e. the elapsed time from enqueue to dequeue.
In § 6 an additional AQM configuration option is introduced to compare marking based on sojourn

time with that based on expected service time (EST), which is the time it is expected to take to
drain the backlog behind the head packet, assuming the recent drain rate continues.

2Early in the report, P means the bugged PRR code. But once we have described how to fix it, in § 4 onwards, P
means with PRR fixed and enabled. Also, in § 6 an additional configuration option is introduced in TCP Prague for
the max burst (1ms, 250𝜇s or no burst).

Version 00B 4 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

3 BUG AND ISSUE IN PRR

3.1 Bug: Unintentional cwnd decrease during CWR
Proportion Rate Reduction (PRR) is an experimental algorithm that attempts to adjust the
congestion window more gradually to the new ssthresh compared to Fast Recovery. PRR accounts
for the number of packets that have been acked and sent throughout a congestion event and uses
this with the new ssthresh to dynamically adjust the number of new packets that can be sent. By
the end of recovery the congestion window will be close to the new ssthresh. The claimed benefits
are less time used in recovery and less timeouts [8].
An interaction between a bug in Linux PRR and TCP Segmentation Offloading (TSO) causes under-

utilization and possibly more bursty traffic. When combined with TCP Segmentation Offloading
(TSO), the bug causes the congestion window to shrink more than intended. When TSO stores up
segments to send all in one go, the bugged PRR code counts them as if they have already been
transmitted. The consequence is lower utilization and possibly more bursty traffic.
The problem is most apparent when a congestion control only reduces the window a little in

response to congestion. It is therefore most problematic in recent congestion control algorithms
(CCAs) that respond less to ECN markings than to loss, for instance those that use the Alternative
Backoff with ECN (ABE [10]) modification. And it is particularly apparent in DCTCP [1].
In contrast, with the large congestion response of a traditional CCA the troublesome code path

is avoided until towards the end of congestion window reduction (CWR). So, the bug does affect
CUBIC, but less so than scalable CCAs like DCTCP. Note that, if congestion is caused by loss, then
TSO is disabled which lessens the impact of this bug.
The bug is caused by a difference between the implementation and the specification in RFC6937 [11].

The TSO code defers using the allowance given in the PRR code, and this allowance is overwritten
with a new allowance on the reception of the next acknowledgement (ack). Previously given allowance
is assumed to be used, but this is not the case when TSO defers sending. We will go into more detail
in section 3.1.1 after we have looked at some illustrations of the problem.

PRR bug: Data centre network scenario. The issue is noticeable at data centre rates as can be
seen in fig. 2. The link rate is 5Gb/s3 and the round-trip time is 1ms. The AQM is a step at
163 us. The different variants are run in separate experiments. The only difference between the two
DCTCP variants is the use of PRR. DCTCP-PS10Tu is DCTCP with PRR (regular DCTCP), and
DCTCP-pS10Tu is DCTCP without PRR.
DCTCP with PRR suffers from lower throughput due to sending being almost halted on ECN

events and increased burstiness when the congestion window is recovered after ECN events. At
almost every congestion event cwnd decays to a very small value before it jumps back up again. This
jump seem to cause a large burst of packets to be sent and a new congestion event.

PRR bug: Wide area network scenario. The issue is also present in wide are network scenarios as
we show in fig. 3. The figure shows the evolution of cwnd and throughput for a single flow using
regular DCTCP and DCTCP without PRR.

3Even without PRR, the data rate has trouble exceeding 4Gb/s. There are two plausible explanations: i) to enforce a
rate of 5Gb/s we use htb, which we discovered was mis-configured to have no burst allowance, meaning that idle time
goes to waste; ii) the step used was too low and allowed system noise to prematurely trigger CE-marks.

18 Oct 2022 5 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

0

200

400

600

800
C

w
n

d

5.9.0-rc1-5.9

DCTCP-PS10Tu

DCTCP-pS10Tu

0 5 10 15 20

Timestamp (Seconds)

2

3

4

T
h

ro
u

gh
p

u
t

×109

DCTCP-PS10Tu

DCTCP-pS10Tu

Figure 2: The Effect of the PRR bug in a Data Centre scenario.
DCTCP with PRR (DCTCP-PS10Tu) suffers from lower utilization because it almost
halts sending during recovery and it ends up sending larger bursts when compared
with DCTCP without PRR (DCTCP-pS10Tu).
Capacity: 5Gb/s; RTT: 1ms; AQM: step at 163 us.

The bug in PRR is even clearer if a ramp from 0.5ms to 2.0ms is used to mark packets. This
can be seen in fig. 4. The reason is that congestion events are much more frequent because cwnd
oscillation is smaller.
The bug is also noticeable when TCP Cubic is used.4 The default value for the back-off factor

(beta) in Linux is 717 (0.7), but RFC 8511 suggest that increasing it to 0.85 can provide benefits.
However, increasing beta makes the PRR bug more noticeable as can be seen in fig. 5. It is possible
that there is little impact on utilization in scenarios with sufficient queueing during the slight halt
in sending. There is however a negative impact on temporary queueing delay because the sending
pattern is more bursty when the congestion window recovers.

4Here, a DCTCP-like AQM is used, with immediate marking at a shallow threshold. This is not a common configuration
for CUBIC. With a deeper buffer, the bug might not greatly affect CUBIC throughput. However, the configuration in
this experiment is similar to a shallow tail-drop buffer, where PRR undershooting would affect throughput largely as
shown.

Version 00B 6 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

0

200

400

600

800
C

w
n

d

5.9.0-rc1-5.9

DCTCP-PS10Tu

DCTCP-pS10Tu

0 20 40 60 80 100 120 140 160

Timestamp (Seconds)

0.0

0.5

1.0

1.5

2.0

T
h

ro
u

gh
p

u
t

×108

DCTCP-PS10Tu

DCTCP-pS10Tu

Figure 3: The Effect of the PRR bug in a Wide Area Network scenario is similar to
that in the Data Centre scenario of Figure 2
Capacity: 200Mb/s; RTT: 50ms; AQM: step at 1ms.

0

200

400

600

800

C
w

n
d

5.9.0-rc1-5.9

DCTCP-PS10Tu

DCTCP-pS10Tu

0 20 40 60 80 100 120 140 160

Timestamp (Seconds)

0.0

0.5

1.0

1.5

T
h

ro
u

gh
p

u
t

×108

DCTCP-PS10Tu

DCTCP-pS10Tu

Figure 4: Inducing more frequent congestion events by using a ramp AQM makes the
consequence of the bug more visible.
Capacity: 200Mb/s; RTT: 50ms; AQM: ramp from 0.5ms to 2.0ms instead of a step
threshold.

18 Oct 2022 7 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

80.0 80.2 80.4 80.6 80.8 81.0

Timestamp (Seconds)

500

550

600

650

700

750

800

850

900
C

w
n

d

5.9.0-rc1-5.9

cubic-717

cubic-850

Figure 5: Excerpt of cwnd time sequence plot for two single-flow experiment runs using
TCP ECN-CUBIC with beta parameter 717 (the default of 0.7) and 850 (0.83). The
PRR bug causes the downward spikes at the bottom of each sawtooth, the main impact
of which is a more bursty sending pattern when the congestion window recovers.
Capacity: 200Mb/s; RTT: 48ms; AQM: step at 2ms.

Version 00B 8 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

Listing 1: PRR pseudocode in RFC6937

298 On every ACK during recovery compute :
299
300 Del iveredData = change in (snd . una) + change in (SACKd)
301 p r r d e l i v e r e d += Del iveredData
302 pipe = (RFC 6675 pipe a lgor i thm)
303 i f (p ipe > s s th r e sh) {
304 // Propor t i ona l Rate Reduction
305 sndcnt = CEIL(p r r d e l i v e r e d * s s th r e sh / RecoverFS) − pr r out
306 } e l s e {
307 // Two ve r s i on s o f the Reduction Bound
308 i f (c on s e rva t i v e) { // PRR−CRB
309 l im i t = p r r d e l i v e r e d − pr r out
310 } e l s e { // PRR−SSRB
311 l im i t = MAX(p r r d e l i v e r e d − prr out , Del iveredData) + MSS
312 }
313 // Attempt to catch up , as permitted by l im i t
314 sndcnt = MIN(s s th r e sh − pipe , l im i t)
315 }

2479 void tcp cwnd reduct ion (struct sock * sk , int newly acked sacked , int f l a g)
2480 {
2481 struct t cp sock * tp = tcp sk (sk) ;
2482 int sndcnt = 0 ;
2483 int de l t a = tp−>snd s s th r e sh − t c p p a c k e t s i n f l i g h t (tp) ;
2484
2485 i f (newly acked sacked <= 0 | | WARNONONCE(! tp−>pr ior cwnd))
2486 return ;
2487
2488 tp−>p r r d e l i v e r e d += newly acked sacked ;
2489 i f (d e l t a < 0) {
2490 u64 div idend = (u64) tp−>snd s s th r e sh * tp−>p r r d e l i v e r e d +
2491 tp−>pr ior cwnd − 1 ;
2492 sndcnt = div u64 (dividend , tp−>pr ior cwnd) − tp−>pr r out ;
2493 } else i f ((f l a g & (FLAGRETRANS DATAACKED | FLAG LOST RETRANS)) ==
2494 FLAGRETRANS DATAACKED) {
2495 sndcnt = min t (int , de l ta ,
2496 max t (int , tp−>p r r d e l i v e r e d − tp−>prr out ,
2497 newly acked sacked) + 1) ;
2498 } else {
2499 sndcnt = min (de l ta , newly acked sacked) ;
2500 }
2501 /* Force a f a s t re t ransmi t upon en t e r ing f a s t recovery */
2502 sndcnt = max(sndcnt , (tp−>pr r out ? 0 : 1)) ;
2503 tp−>snd cwnd = t c p p a c k e t s i n f l i g h t (tp) + sndcnt ;
2504 }

Listing 2: PRR implementation in Linux

18 Oct 2022 9 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

3.1.1 Differences between RFC6937 and PRR implementation. PRR is described in RFC6937. It
includes pseudo-code relisted in Listing 1. The ’On every ACK’ part of the implementation in Linux
is listed in listing 2.
In the draft it says the following: “We introduce a local variable ”sndcnt”, which indicates exactly

how many bytes should be sent in response to each ACK.”
That means that each time a new ack is received the cwnd should be increased enough so that

sndcnt bytes are sent. Linux operates in number of packets instead of number of bytes; so we will
continue the explanation in terms of number of packets. The Linux implementation executes the
increase in line 2503. It adds sndcnt to the current number of packets in flight. However, it never
checks that those sndcnt packets are sent, so if they aren’t, the next update will simply discard the
previous increase. There is a difference between allowing sndcnt more packet to be sent and actually
sending them. If the opportunity is not seized, the allowance is thrown away immediately on the
reception of the next acknowledgement. The crux is that packets that should be sent according to
the rules of PRR are not sent because TSO defers sending in an attempt to create larger bursts.
There is a difference between the implementation of PRR in Linux and the pseudocode in RFC6937

in the clause called PRR-CRB. We will use the variable names in Linux for the following discussion.
The variable delta is the difference between ssthresh and pipe (in-flight packets). We define the
allowance surplus to denote the difference between prr delivered and prr out.
In the pseudocode, the limit (the number of packets that can be sent in response to an ack) is

set to the maximum of delta and the allowance surplus. This makes sure that cwnd is recovered
if it drops below ssthresh. However, on line 2499 in the implementation of PRR, Linux uses the
minimum of the number of newly delivered segments and delta. Consequently, if cwnd falls more
than the number of newly delivered segments below ssthresh, it will not recover before the end of
CWR. This can be fixed by aligning Linux’s implementation with the pseudocode in RFC6937.

3.1.2 Fix: Aligning Linux’s PRR implementation with RFC6937. As we discussed in 3.1.1 the behaviour
is a result of a difference in the pseudocode in RFC6937 and the implementation in Linux. The
implementation in linux misbehaves when the number of in-flight packets is less than the target
ssthresh.
It is possible that the algorithm was intentionally changed in fear of introducing bursty behaviour,

but the other conditions can also introduce bursty behaviour, therefore this seems unlikely.

Listing 3: Patch applied to align PRR with RFC6937

1 d i f f −−g i t a/net / ipv4 / tcp input . c b/net / ipv4 / tcp input . c
2 index 184 ea556f50e . . 5 5 6 dec987251 100644
3 −−− a/net / ipv4 / tcp input . c
4 +++ b/net / ipv4 / tcp input . c
5 @@ −2502 ,7 +2502 ,7 @@ void tcp cwnd reduct ion (s t r u c t sock * sk , i n t

newly acked sacked , i n t f l a g)
6 max t (int , tp−>p r r d e l i v e r e d − tp−>prr out ,
7 newly acked sacked) + 1) ;
8 } e l s e {
9 − sndcnt = min (de l ta , newly acked sacked) ;
10 + sndcnt = min (de l ta , tp−>p r r d e l i v e r e d − tp−>pr r out) ;
11 }
12 /* Force a f a s t r e t ransmi t upon en t e r i ng f a s t recovery */
13 sndcnt = max(sndcnt , (tp−>pr r out ? 0 : 1)) ;

Version 00B 10 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

0

200

400

600
C

w
n

d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-PS10Tu

DCTCP-pS10Tu

0 5 10 15 20

Timestamp (Seconds)

3.0

3.5

4.0

T
h

ro
u

gh
p

u
t

×109

DCTCP-PS10Tu

DCTCP-pS10Tu

Figure 6: Fixed PRR bug in a data centre network scenario (c.f. Figure 2).
Aligning Linux’s implementation with RFC6937 fixes the PRR bug and its conse-
quences.
Capacity: 5Gb/s; RTT: 1ms; AQM: step at 1ms.

The patch we propose is listed in listing 3. It takes the difference between what it should have
been sent and what has been sent into account when it calculates the new allowance.

PRR bugfix: Data center network scenario. Figure 6 shows that aligning Linux’s implementation
with the RFC prevents the cwnd from decreasing rapidly during CWR. The cwnd is still reduced
by a fraction of the burst size because packets waiting in the TSO defer state are left out in the
pipe-calculation upon entering CWR. The number of in-flight packets is less than the congestion
window at the start of CWR because of TSO deferral.

PRR bugfix: Wide area network scenario. Figures 7 and 8 shows that the bugfix removes the issue
in a wide are network scenario whether using DCTCP or TCP CUBIC.
The PRR bug affects data centre and wide area network scenarios. It might affect data centres

more because the burst sizes at higher rates are greater, and so TSO is more unlikely to allow a
small number of packets to be sent.

3.2 PRR bug: Discussion
It is unknown to what degree the PRR bug has affected researchers’ work over the last couple of
years. It is likely that utilization and fairness changes after applying this bugfix. Every experiment
that has used the default DCTCP implementation might need revision. For instance, two recent
interesting papers on L4S use DCTCP in their experiments [2, 12]. They do not mention that PRR
was disabled, so it is possible that the bug impacted the results.

18 Oct 2022 11 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

0

200

400

600

800
C

w
n

d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-PS10Tu

DCTCP-pS10Tu

0 20 40 60 80 100 120

Timestamp (Seconds)

0.0

0.5

1.0

1.5

2.0

T
h

ro
u

gh
p

u
t

×108

DCTCP-PS10Tu

DCTCP-pS10Tu

Figure 7: Fixed PRR Bug in a wide area network scenario (c.f. Figure 3).
Aligning Linux’s implementation with RFC6937 fixes the PRR bug and its conse-
quences.
Capacity: 200Mb/s; RTT: 50ms; AQM: step at 1ms.

It is unlikely that production deployments of DCTCP do not suffer from this bug. It is hard for us
to tell whether or not this bug causes significant loss of efficiency in production environments. It
is therefore important to undertake proper comparisons between the bugged and fixed code with
realistic traffic.

3.3 PRR & TCP Prague
The implementation of TCP Prague, created and maintained by the L4S team, avoids PRR altogether
by implementing the cong control callback introduced with BRR. It is therefore not affected by the
PRR bug at all.
Interestingly, TCP Prague has a similar gradual reduction to handle sub-MSS adjustments to it’s

congestion window. The implementation, however, does not spread the adjustment over a whole
round-trip time. It makes at most an adjustment of 1MSS per ack. That way it prevents sudden
bursts caused by large changes in its congestion window.

3.4 To PRR, or not to PRR, with Scalable CCAs
The consequence of using the number of in-flight packets to build a burst when TSO defers sending
is that the number of in-flight packets can be less than the congestion window when CWR is entered.
If the change in ssthresh is small this can cause the congestion window to start below the new
ssthresh, and stay so throughout the whole round-trip time. The problem is barely noticeable for
Classic CCAs because their reductions are usually larger than the burst size TSO tries to achieve.

Version 00B 12 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

67.00 67.25 67.50 67.75 68.00 68.25 68.50 68.75 69.00

Timestamp (Seconds)

500

550

600

650

700

750

800

850

900
C

w
n

d

5.9.0-rc1v5.9.0-prr-bugfix

cubic-717

cubic-850

Figure 8: TCP CUBIC congestion window behaviour is also fixed (c.f. Figure 5).
Excerpt of cwnd time sequence plot for two single flows using TCP CUBIC with beta
parameter 717 (0.7) and 850 (0.83).
Capacity: 200Mb/s; RTT: 48ms; AQM: step at 2ms.

RFC 6937 does not discuss the interaction between PRR and TSO deferral, so it is unclear to us
whether this is intended behaviour or not.
DCTCP is a scalable CCA that tries to adjust its congestion window gradually. PRR prevents it

from doing so because it forces a larger reduction if there is a greater number of packets waiting
to be sent as a TSO burst when CWR is entered compared to DCTCP’s calculated reduction. If
congestion events are very frequent, PRR forces DCTCP to maintain a lower window than it intends.
The fact that the congestion window can stay below the new ssthresh for the whole duration of

CWR is problematic for two reasons.

(1) It reduces the load on and possibly the utilization of the bottleneck link. A very slight reduction
in ssthresh that would fully utilize the link can be overruled by a larger reduction decided by
PRR.

(2) It might confuse the CCA. If an algorithm decided to do a very slight initial decrease with
the hope that the congestion in transient it cannot know whether it was its decrease or PRR’s
decrease that was applied. It might be able to infer it from observations of the congestion
window over CWR, but even if it is able to do that it has no way to change it.

3.4.1 PRR prevents rapid response. In addition, PRR prevents DCTCP from reacting quickly to
an increase in congestion. DCTCP is designed to react to the extent of congestion and change its
reduction accordingly. However, when DCTCP deems that it needs to reduce load quickly, PRR
prevents it from doing so because it tries to do it gradually. This can cause congestion to persist
longer than necessary and trigger new reductions that DCTCP without PRR would have been able
to avoid.

18 Oct 2022 13 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

3.5 PRR Bug: Conclusion
In this section we have shown a bug in the Linux’s implementation of the Proportional Rate Reduction
(PRR) algorithm. We have explained why it happens and the consequences of the bug. Specifically,
the bug occurs in cases where i) the number of in-flight packets is less than the congestion window at
the start of CWR (because of TSO deferral); and ii) there is a very small reduction of the congestion
window. The bug leads to a brief stall, followed by a burst once the congestion window has corrected
itself. This burst can trigger a new congestion event in the round following each reduction, which in
turn tends to cause under-utilization.
We have provided a simple change to the current code that eliminates the bug and the associated

issues. However, fixing the bug uncovers an issue with fairness that we will look into in the rest of
the report.
Whether or not PRR is appropriate for scalable congestion controls is unclear. The idea of PRR

is to gradually reduce the congestion window to the new ssthresh over a round trip time. Scalable
CCAs usually make very small adjustments to their congestion window, and so the new ssthresh
is typically very close to the previous congestion window. In these cases when the reduction only
needs to be small, there is little benefit in reducing gradually. And when the reduction needs to be
relatively large it is questionable whether slowing it down is useful.

Version 00B 14 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

4 LATECOMER DISADVANTAGE
In certain scenarios, when the PRR bug presented in section 3.1.2 is fixed, it unmasks a rate
convergence problem between two identical long-running flows, as shown in fig. 9. The top row is
the current default implementation of DCTCP (but with the PRR bug fixed). The middle two rows

102 stat ic u32 dc t cp s s th r e sh (struct sock * sk)
103 {
104 struct dctcp * ca = i n e t c s k c a (sk) ;
105 struct t cp sock * tp = tcp sk (sk) ;
106
107 ca−>l o s s cwnd = tp−>snd cwnd ;
108 return max(tp−>snd cwnd − ((tp−>snd cwnd * ca−>dctcp a lpha) >> 11U) , 2U) ;
109 }
110
111 stat ic void dctcp update a lpha (struct sock * sk , u32 f l a g s)
112 {
113 const struct t cp sock * tp = tcp sk (sk) ;
114 struct dctcp * ca = i n e t c s k c a (sk) ;
115
116 /* Expired RTT */
117 i f (! b e f o r e (tp−>snd una , ca−>next seq)) {
118 u32 d e l i v e r e d c e = tp−>d e l i v e r e d c e − ca−>o l d d e l i v e r e d c e ;
119 u32 alpha = ca−>dctcp a lpha ;
120
121 /* a lpha = (1 − g) * a lpha + g * F */
122
123 alpha −= min not zero (alpha , alpha >> d c t c p s h i f t g) ;
124 i f (d e l i v e r e d c e) {
125 u32 d e l i v e r e d = tp−>de l i v e r e d − ca−>o l d d e l i v e r e d ;
126
127 /* I f d c t c p s h i f t g == 1 , a 32 b i t va lue would ove r f l ow
128 * a f t e r 8 M packe t s .
129 */
130 d e l i v e r e d c e <<= (10 − d c t c p s h i f t g) ;
131 d e l i v e r e d c e /= max(1U, d e l i v e r e d) ;
132
133 alpha = min (alpha + de l i v e r ed c e , DCTCPMAXALPHA) ;
134 }
135 /* dc t cp a l pha can be read from d c t c p g e t i n f o () wi thou t
136 * synchro , so we ask compi ler to not use dc t cp a l pha
137 * as a temporary v a r i a b l e in p r i o r opera t i ons .
138 */
139 WRITEONCE(ca−>dctcp alpha , alpha) ;
140 d c t cp r e s e t (tp , ca) ;
141 }
142 }

Listing 4: Source code of DCTCP in Linux, /net/ipv4/tcp dctcp.c

18 Oct 2022 15 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

show two different attempts to improve DCTCP’s EWMA (explained below). Then the bottom row
shows that the problem is related to TSO, because disabling TSO restores reasonable convergence.
In the top three cases with TSO enabled (and the PRR bug fixed), it seems that the flows are

falling into a local equilibrium before they converge. Initially, we conjecture that the bug in PRR
masked these convergence problems by introducing sufficient noise to jump the flows out of their
local equilibrium into a more stable equilibrium with equal flow rates.
Before we try to untangle the cause of these results, we will introduce the two attempts to improve

DCTCP’s EWMA in the middle rows of fig. 9, with reference to the DCTCP EWMA code in listing 4.
For those without in-depth knowledge of this code, a brief introduction is provided in appendix A.

∙ In the second row, ‘toggling’ of the EWMA (line 123 of Listing 4 coloured pink) is removed (T→t).
Without toggling, alpha floors at the relatively high value of 16 (the integer representation of
16/1024 or 1.6%). With toggling, if alpha is less than 16 it is forced to zero.
∙ In the third row, as well as removing the toggling, alpha is upscaled (u→U) and the EWMA
precision is doubled from 10-bit to 20 (10→20). The EWMA is upscaled by 16 so that low
values can still be bit-shifted by 16 without being truncated to zero. This is the same approach
as the EWMA of SRTT already in TCP. The combination of upscaling and higher precision
ensures that low values of the EWMA down to about 1/220 or about 1E-6 can be represented
in the variable alpha. Upscaling also fixes the problem in lines 30–31 of Listing 4 (coloured
orange), which otherwise round down the proportion of ECN feedback to the nearest 1/16,
which black-holes ECN feedback completely if less than 1 in 16 packets in a round are marked.5

Returning to fig. 9, convergence does not seem to be such a problem if toggling of alpha is removed
(T→t) and alpha precision remains low (10) as in the second row. To explain this we can start by
looking at the values of alpha for the two flows in fig. 10. We see that, when the flows converge to
the same window, the alpha values also converge to the same value. When TSO is disabled (last
row, S→s) the two flows quickly reach the same alpha value, suggesting that they do get the same
marking proportion from their packets. This does not seem to be the case for the original default
toggling behaviour along the top, nor for the higher precision upscaled DCTCP variant (third row).
The ‘flooring’ variant (second row) improves convergence in steady-state conditions, but we shall

see later that it makes scalable CCAs lose their tight control under dynamic conditions. The second
row of fig. 10 clearly shows that alpha floors at 16, which is the minimum representable value with
a precision of 10 bits. So neither flow can reach the lower alpha value that would be expected at
equilibrium. So, with toggling removed, each flow fools itself into thinking it is getting the same
relatively high marking probability of 1.6%, even if it is actually getting much less marking (which it
should be at equilibrium). Therefore, its sawteeth vary much more than they need to. Nonetheless,
flow rates converge reasonably well, but still not completely.
In the higher precision upscaled variant (third row), alpha now seems to converge to different

values, which can only really occur if they get different marking proportions from the network. It
seems that the reason the flooring variant (second row) converges better is because flooring alpha
mutes a difference in marking proportion that something else is causing, which the higher precision
variant (row 3) picks up on. However, forcing alpha to stick at a value higher than it is trying to
reach doesn’t really solve the problem, and it is likely to cause more queue variation than necessary.
We dig more deeply into this in section 4.2, after first checking behaviour with different RTTs.

5Note that, once the toggle is removed from DCTCP, upscaling or improving precision would have to be done DC-wide,
otherwise those flows still running with a high floor to the EWMA would starve themselves.

Version 00B 16 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

250

500

750

1000
C

w
n

d

DCTCP-PS10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

250

500

750

1000

C
w

n
d

DCTCP-PS10tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

250

500

750

1000

C
w

n
d

DCTCP-PS20tU slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

0 20 40 60 80 100 120

Timestamp (Seconds)

250

500

750

1000

C
w

n
d

DCTCP-Ps10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

Figure 9: The latecomer disadvantage appears once the PRR bug is fixed.
Time sequences of cwnd for two identical variants of DCTCP with starts staggered by
5 s (all with PRR fixed): i) regular DCTCP; ii) DCTCP without toggling to 0 of the
EWMA; iii) DCTCP with upscaled EWMA and 20-bit precision; iv) DCTCP without
TSO. Each affects two flow’s ability to converge to equal rate to different degrees.
Capacity: 200Mb/s; RTT: 50ms; AQM: step at 2ms.

18 Oct 2022 17 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

0.00

0.05

0.10

0.15
A

lp
h

a

DCTCP-PS10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

0.00

0.05

0.10

0.15

A
lp

h
a

DCTCP-PS10tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

0.00

0.05

0.10

0.15

A
lp

h
a

DCTCP-PS20tU slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

0 20 40 60 80 100 120

Timestamp (Seconds)

0.00

0.05

0.10

0.15

A
lp

h
a

DCTCP-Ps10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

Figure 10: Time sequence of the DCTCP EWMA (alpha) for the two flows in fig. 9.

4.1 Dependency of latecomer disadvantage on RTT
At 200Mb/s the rate fairness between two identical flows varies with their common RTT as shown
in fig. 11. Each flow’s measured marking proportion is plotted in fig. 12. Notice that there is a
surprisingly small difference as the RTT increases, given the large rate-unfairness. This is because
many of the marks that flow 1 receives are not used to reduce cwnd because alpha is toggled to 0
frequently. However, flows sharing the same queue would be expected to share the same marking

Version 00B 18 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

2.12800 5.25600 11.51200 17.76800 24.02400 30.28000 42.79200

Round-trip Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

J
ai

n
s

fa
ir

n
es

s
in

d
ex

Fairness

Figure 11: Latecomer disadvantage becomes more pronounced with RTT.
Rate fairness for two flows against their common RTT using two staggered-start identi-
cal regular DCTCP flows (DCTCP-PS10Tu). The latecomer always has the lower rate.
Capacity: 200Mb/s; AQM: step at 2ms.

2.12800 5.25600 11.51200 17.76800 24.02400 30.28000 42.79200

Round-trip Time (ms)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

M
ea

n
m

ar
k
in

g
p

ro
p

or
ti

on

Flow 1

Flow 2

Figure 12: The latecomer (flow 2 with lower window) experience a higher marking
proportion during the same experiment as fig. 11.

18 Oct 2022 19 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

probability. So, the difference in marking probability experienced by the two flows suggests that the
cause of the latecomer disadvantage is not just in the CCA behaviour.
The Linux implementation of TSO tries to send one skb every 1ms. The number of packets in

the skb is based on the expected number of packets that the bottleneck can process over 1ms. The
expected number of packets is simply calculated as

1[𝑚𝑠] *𝑊 [𝑝𝑘𝑡]

𝑆𝑅𝑇𝑇 [𝑚𝑠]
,

which is effectively the max burst in time multiplied by the packet rate. Therefore, the flow with
the greatest packet rate will have the greatest burst size. That is the situation in the experiments
presented above. The later flow sends far smaller bursts while trying to push in than the earlier
established flow, because their rates are widely different. It is possible that the greater bursts are
being marked proportionately less, so the latecomer experiences a higher marking proportion and
converges to a smaller congestion window than the earlier, established flow.
We do not believe that this is solely an issue with the sender implementation. In Section 6 we show

that there is a more fundamental problem with how AQMs handle bursty traffic if their marking
is based on sojourn time. But first we consider how much it is possible to mitigate the latecomer
disadvantage at the sender alone.

4.2 Latecomer disadvantage: Potential remedies
Five potential remedies for the latecomer disadvantage are introduced below. The last three are
investigated further in the remainder of the report:

∙ Disable TSO;
∙ Implement pacing in the NIC;
∙ Remove the toggling to zero of the EWMA;
∙ More tightly limit burst size;
∙ Alter the AQM.

4.2.1 Disable TSO. Disabling TSO removes the latecomer disadvantage, but is not a viable option
because the sender becomes processor-bound at multi-gigabit rates, resulting in lower throughput.
DCTCP achieves roughly 3Gb/s over a 5Gb/s testbed bottleneck when TSO is disabled. That is
sending roughly one 1500B packet every 4 microsecond. That is processor time that is possibly taken
from other applications. It is not just in data centers that this is an issue. Residential access capacity
is likely to continue to increase but packet sizes are much harder to increase. So, at some point TSO
will probably become necessary.

4.2.2 Implement pacing in the NIC. Pacing TSO bursts in the NIC would probably reduce or even
eliminate the latecomer disadvantage, but to our knowledge, few off-the-shelf NICs support packet
pacing (yet).

4.2.3 Remove the toggling to zero of the EWMA. The latecomer disadvantage doesn’t show up in
the DCTCP-PS10tu case with a floor to the EWMA in fig. 9 (second row). It can be seen in fig. 10
that the floor to the EWMA prevents it reducing towards 0, which makes both flows fool themselves
into thinking congestion is higher than it is. So whenever there is any congestion, they both react
more than they need to and converge in large sawtooth steps, more like a Classic CCA.

Version 00B 20 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

Although flooring the EWMA at 16 (instead of toggling to zero) largely removes the latecomer
disadvantage, it causes other problems. Specifically, it loses the tight control loop that is meant
to be a feature of scalable CCAs. Also, it causes the limit cycle to grow as flow rate scales over
the years. This means that the queue length measured in packets or bytes has to increase with
increased capacity to avoid underutilization. In contrast, a scalable CCA should be able to preserve
full utilization with the same size buffer (measured in bytes), so queueing delay should decrease as
flow rate scales.
Also, removing toggling is not enough in scenarios where steady state alpha is above the alpha’s

minimum value, for instance when BDP is low. One example using a low RTT is shown in fig. 13.
Convergence without the toggle (the second row) is very slow.

4.2.4 More tightly limit burst size. The unfairness issue is, at least partly, a result of difference in
marking proportion between the two competing flows caused by very different burst sizes. In the
DCTCP implementation the difference is amplified by toggling of alpha to 0; It makes it harder for
the flow with the bigger window to get away from alpha=0.
In the scenarios we have tested (see section 6), TCP Prague largely avoids the latecomer disadvan-

tage. In TCP Prague, alpha has 20 bit precision and it is stored as an upscaled value. In addition it
does not toggle alpha to 0. Therefore Prague should have similar behaviour to DCTCP-PS20tU.
However, we see later (Section 5) that DCTCP-PS20tU does less well at avoiding the latecomer
disadvantage.
The main other difference is that DCTCP uses Linux’s default max burst duration of 1ms, whereas

TCP Prague limits bursts to 250𝜇s. So limiting burst size to significantly less than the marking
threshold seems an important factor.6 This is investigated further in section 6.

4.2.5 Alter the AQM. In recent work on rapid signalling of queue dynamics [3], it was noticed that
using the sojourn time of the packet being dequeued to measure queue delay exhibits two problems:
i) it fails to use the latest queue information, instead measuring the delay of the queue as it was
when the packet arrived; ii) it marks a packet based on the delay it experiences itself, rather than
the delay it causes to other packets backlogged behind it.
On further investigation, this latter point was found to be particularly problematic with traffic

bursts that cause delay of the same order as the marking threshold. Then, most or all the packets
within the burst would not be marked, but any packets arriving more smoothly would be likely to
sit behind the burst as it drained, and therefore more likely to be marked themselves.
Therefore, in section 6 we shift attention from the congestion control at the sender to investigating

a possible alteration to the AQM in the network.

6Note that, as the bottleneck rate increases and approaches the rate of the sender’s NIC, the size of the max burst
that will cause 250𝜇s of queuing becomes an under-estimate if it is calculated from 250𝜇s * cwnd / RTT. This has to
be borne in mind when interpreting results — if no latecomer disadvantage is apparent when measuring data centre
scenarios, it could simply be because bottleneck link rates in DCs are closer to NIC rates. So the max burst size that
DCTCP calculates to avoid 1ms of queuing could actually cause much less than 1ms of queuing.

18 Oct 2022 21 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

100

200

300

400
C

w
n

d

DCTCP-PS10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

100

200

300

400

C
w

n
d

DCTCP-PS10tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

100

200

300

400

C
w

n
d

DCTCP-PS20tU slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

0 20 40 60 80 100 120

Timestamp (Seconds)

100

200

300

400

C
w

n
d

DCTCP-Ps10Tu slope (5.9.0-rc1v5.9.0-prr-bugfix)

Flow 0

Flow 1

Figure 13: Removing the toggle of alpha is less effective at remedying slow convergence
when RTT is smaller.
Time sequences of cwnd with a smaller RTT but the same four variants of DCTCP as
Figure 9 (all with PRR fixed): i) regular DCTCP; ii) DCTCP without toggling to 0
of alpha; iii) DCTCP with upscaled EWMA and 20-bit precision; iv) DCTCP without
TSO.
Capacity: 200Mb/s; RTT: 17.768ms; AQM: step at 2ms.

Version 00B 22 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

5 REMOVING THE TOGGLE OF ALPHA TO ZERO
In this section we will discuss why the toggling of alpha to 0 on line 123 in the current (Sep 2021)
DCTCP Linux implementation (Listing 4 in Appendix A) is believed to be problematic.7

Line 123 executes the first part of the EWMA, where alpha is subject to a decay. The function
min not zero returns the minimum of two values, but if either is equal to zero the other one is
returned. Zero is returned if both are zero. Consequently, if the decay should be smaller than that
allowed by the granularity of alpha, the second term will become 0 and the current value of alpha is
returned by min not zero. This causes alpha to be reduced to 0, effectively fast-forwarding the decay
calculation. That means that alpha values between 1/1024 and 15/1024 are unused. We call this
range a deadzone.
The use of min not zero was accepted on very weak grounds in commit c80dbe0461298. It states

that it is a problem that dctcp alpha can never reach 0. It claims that this ’could gradually drive
uncongested flows with leftover alpha down to cwnd=137’. No empirical evidence seems to have
been required to support this claim. In practice, this would only be possible if there were congestion
marks in most round-trips (perhaps due to bursty flows caused by TSO or smaller flows). Otherwise
there would be nothing to trigger reductions in cwnd, no matter the value of alpha. Even if there
were some marks caused by burstiness, the more cwnd reduced, the lower the likelihood of any
further marks in each round.

5.1 Toggling alpha to zero: Problem
The toggle to zero effectively makes a flow unresponsive until congestion gets bad enough to push
dctcp alpha above 15. If there is a continuous arrival of smaller flows one or more existing flows
might not yield spare capacity to them. This causes the load of the smaller flows to be absorbed by
the bottleneck’s queue, introducing queueing delay spikes.
This deadzone from 0 to 15 is problematic because it means that DCTCP is less scalable than it

should be. As we discussed in appendix A.1, DCTCP’s scalability property holds if alpha stays at
its equilibrium value. As capacity grows alpha has to decrease to keep DCTCP scalable. However,
the current implementation cannot achieve equilibrium alpha values for congestion windows larger
than 128.8 The toggling of dctcp alpha is not the cause of this. The original code that floored at 16
was the cause, but toggling to zero is not the right remedy.
Removing the toggling to zero is not necessarily a sufficient remedy either. Even if the line with the

min not zero function is removed, when the current DCTCP code feeds the count of CE markings
into the EWMA at the end of each round, it rounds down the fraction of markings to an integer
multiple of 1/64 (including zero). This creates another dead zone between zero and 1/64 (1.6%).
This time, the dead zone is not during EWMA decay, but during input of congestion markings.

7This issue/bug was introduced in Nov 2015 [14], being first applied in the v4.3 kernel. The bug was originally
discovered by Koen De Schepper and a patch submitted, but not accepted on the grounds that no problem had been
apparent. This motivated the start of work on the present report (before the full extent of the tangle of problems was
understood).
8Given the equilibrium fraction of CE marks reduces as flow rate scales, if the two marks expected at equilibrium
are fed back, the algorithm will always black-hole them both for flow rates with cwnd > 128. And it will remain
unresponsive until it forces the number of CE marks to rise to the next integer above cwnd/64 (when it will register
just 1 mark per RTT) and black hole the rest.

18 Oct 2022 23 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

This flaw is in lines 130–131, still referring to the dctcp update alpha function in listing 4, where
they are coloured orange. As already explained, in integer arithmetic, the current DCTCP represents
dctcp alpha by integers in the range 0–1024. At line 130, delivered ce is therefore multiplied by 1024,
but at the same time it is factored down by the gain of the EWMA (1/16), which is achieved by the
left-shift by −dctcp shift g, which is -4.
For instance, if flow rate is 200Mb/s and RTT=40ms; cwnd = 667 so on average delivered = 667,

then if there are 8 CE marks in a round, delivered ce = 8, and the two lines result in:
130 : 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑐𝑒 = 8 << (10− 4) = 512;
131 : 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑐𝑒 = 512/667 = 0;
So 8 CE marks get black-holed. Upscaling the EWMA is intended to address this flaw. It is
investigated below, but with unexpected results.

5.2 Toggling alpha to zero: Evaluation
In the following experiments we highlight the difference in cwnd and dctcp alpha evolution for
implementations that handle the update of dctcp alpha differently. We run the experiments first
with a step threshold at 2ms then with a linear ramp from 2ms to 4ms.
For these experiments the capacity is set to 200Mb/s, and the RTT is 91.8ms. The values were

chosen to create a large congestion window which shows the dynamics more clearly. In addition, this
allows the improved dynamics to feed through as improved utilization.

5.2.1 Step at 2ms. Figure 14 plots the evolution of cwnd, throughput and alpha for DCTCP with
and without toggling of dctcp alpha to 0 when it reaches 15.
With toggling, the flow seems to experience regular consecutive congestion events, one when alpha

is 0 and one when alpha has been increased enough for a reduction to occur. The flow without the
toggling seems to relieve congestion through a single reduction and has less oscillation in alpha and
cwnd. Throughput also remains higher when dctcp alpha is not toggled to 0.
Figure 15 plots the evolution of cwnd, throughput and alpha for three variants of DCTCP: i)

without toggling of alpha; ii) alpha stored upscaled without changing the 10-bit precision; and iii)
alpha stored upscaled with 20-bit precision. The upscaled versions make the values below 16 available
to dctcp alpha, and should therefore allow for more gradual adjustments of cwnd and less oscillation.
However, that seems to not be the case. We conjecture that this is due to the use of a step AQM.

A step makes the marking probability switch between 0 and 100% marking for at least a full round
until the response can reduce the queue back below the threshold. This causes a large window
reduction, so additive increase then takes many rounds to recover the lost ground. The result is
much more like a Classic large-sawtooth variation in the window and consequently leads to high
variation in queuing delay.
In the next experiments, we try switching from a step to a ramp, expecting to make the low values

of alpha more accessible. It might then even be possible to increase the smoothing factor (gain) to
make response to a change in congestion faster.9

9However, investigation of that is set aside for further work, because it would also reduce a long flow’s memory of
congestion due to background short flows.

Version 00B 24 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

1300

1400

1500

C
w

n
d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-Ps10Tu

DCTCP-Ps10tu

160

170

180

190

200

T
h

ro
u

gh
p

u
t

(M
b

p
s)

DCTCP-Ps10Tu

DCTCP-Ps10tu

160 180 200 220 240 260 280 300

Timestamp (Seconds)

0.00

0.05

0.10

0.15

0.20

A
lp

h
a

DCTCP-Ps10Tu

DCTCP-Ps10tu

Figure 14: Toggling of alpha to 0 (blue) increases the chance of underutilization due
to back-to-back reductions.
The plot shows cwnd, throughput and alpha time-series for two different DCTCP
implementations: with and without toggling of alpha to 0 (T & t).
Capacity: 200Mb/s; RTT: 91.8ms; AQM: step at 2ms.

18 Oct 2022 25 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

1300

1400

1500

C
w

n
d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

160

170

180

190

200

T
h

ro
u

gh
p

u
t

(M
b

p
s)

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

160 180 200 220 240 260 280 300

Timestamp (Seconds)

0.00

0.05

0.10

0.15

0.20

A
lp

h
a

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

Figure 15: Once toggling to zero has been removed (t), upscaling (U) seems to make
utilization worse, perhaps by increasing the chance of back-to-back reductions A high
floor to the EWMA of 16/1024 (red) seems to make it less sensitive to noise, by effec-
tively becoming a classic CCA with a fixed lower bound to its multiplicative decrease.
The plots show cwnd, throughput and alpha time-series for three different DCTCP
implementations: without toggling of alpha to 0 (DCTCP-Ps10tu), alpha stored up-
scaled with 10-bit precision (DCTCP-Ps10tU), and alpha stored upscaled with 20-bit
precision (DCTCP-Ps20tU). The red plot is the same as the red plot in fig. 14 for
comparison.
Capacity: 200Mb/s; RTT: 91.8ms; AQM: step at 2ms.

Version 00B 26 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

5.2.2 Linear ramp from 2ms to 4ms. An AQM that can provide more fine grained feedback is a
solution to the large Classic-like sawteeth with a step. The simplest possibility is a linear ramp that
marks packets proportionally to how far up the ramp the current queueing delay is (rather like RED,
but configured using time units, and with no queue averaging). fig. 16 & fig. 17 show that a ramp
enables smaller marking proportions so that the window oscillations can become completely smooth
to the eye, except in the two cases where the EWMA in the sender prevents itself from representing
smaller marking proportions, as shown in the two red cases with a low precision floor to the EWMA
(. .10tu).
Step marking also induces synchronization between the window sawteeth of flows. Without

synchronization, the amplitude of the queue delay variation decrease as the number of flows increases.
But, with synchronization, the size of the combined oscillation tends to the sum of all the synchronized
individual variations.
In the following experiments the AQM uses ramp marking where the probability grows linearly

from 0 to 1 as queuing delay grows from 2ms to 4ms.
Figure 16 plots the evolution of cwnd, throughput and alpha for DCTCP with and without toggling

of dctcp alpha to 0 when it reduces below 16.
Here we see an interesting situation where the congestion window stays almost constant when

dctcp alpha is toggled to 0. This is because the flow with alpha at 0 does not reduce its window,
and Linux DCTCP does not increase its window either, because it does not do additive increase
while in CWR state for a round after a reduction, and it resets its cumulative count (snd cwnd cnt)
upon entering CWR. In effect, the flow is stuck. This seems great, as throughput stays high and
there is no oscillation, but in a competitive scenario this prevents convergence. Two or more flows
that suppress additive increase during CWR and toggle alpha to zero can all get stuck in a local
equilibrium when congestion is less than that needed for alpha to exceed 15, for instance where each
flow gets a couple of marks each round-trip time. Then they all suppress both additive increase and
multiplicative decrease.10

When dctcp alpha is not toggled to 0 it remains floored at 16 which causes the same predictable
oscillation as when a step threshold is used, but it seems to mitigate the latecomer disadvantage
problem. However, as flow rate scales, this effectively fixes DCTCP’s window reduction whatever
the extent of congestion (unless congestion is really high).11 So DCTCP would no longer be able
to respond to the extent of congestion marking effectively, and it would no longer induce frequent
marking. So it would lose the tight control of a scalable CCA. For instance, it would no longer be
able to rapidly detect when congestion marking had stopped.12

10The Prague congestion control continues additive increase throughout CWR state, so it doesn’t experience such a
complete lack of sawtoothing. It also helps that Prague carries over any remaining snd cwnd cnt properly. Specifically,
Prague divides its increase over the ACKs arriving in a round, but suppresses the increase on ACKs that report
congestion feedback, which ensures that additive increase still reduces as congestion increases. Ironically, continuing
AI during CWR was originally added to Prague to make window oscillations smoother, because suppressing AI during
CWR left little time for any increases at all unless reductions were large.
11Indeed, flooring alpha at 16 effectively turns DCTCP into a hybrid between DCTCP and ABE (Alternative Backoff
with ECN [10]) with a very low but fixed decrease factor of 1/16.
12Flooring alpha at 16 is essentially a hack to mitigate a problem with the way DCTCP and Prague trigger a reduction
on the first CE mark (when alpha has often decayed to zero), then suppress any further reduction for a round of CWR
state, just when most congestion feedback is arriving. A technique to measure and respond to congestion per-ACK
rather than per-RTT is in the process of evaluation [4]. it also removes all the unnecessary lag in the EWMA clocking
machinery of Prague, which adds up to between 1 and 2 round trips. However, although that is part of the tangle of

18 Oct 2022 27 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

1300

1400

1500

C
w

n
d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-Ps10Tu

DCTCP-Ps10tu

160

170

180

190

200

T
h

ro
u

gh
p

u
t

(M
b

p
s)

DCTCP-Ps10Tu

DCTCP-Ps10tu

160 180 200 220 240 260 280 300

Timestamp (Seconds)

0.00

0.05

0.10

0.15

0.20

A
lp

h
a

DCTCP-Ps10Tu

DCTCP-Ps10tu

Figure 16: With a ramp AQM and a DCTCP implementation that toggles alpha to 0
(blue) the initial reaction to a congestion signal is to not reduce cwnd at all. In this
steady-state experiment the user will not experience degraded performance (utilization
is 100%), but the text explains that flooring alpha will lose the potential advantages
of a scalable congestion control in dynamic scenarios.
The plots show cwnd, throughput and alpha time-series for two different DCTCP
implementations: with and without toggling of alpha to 0 (T & t).
Capacity: 200Mb/s; RTT: 91.8ms; AQM: ramp from 2ms to 4ms.

Figure 17 plots the evolution of cwnd, throughput and alpha for DCTCP without toggling of
alpha, alpha stored upscaled with 10 bit precision and alpha stored upscaled with 20 bit precision.
In all cases the AQM is a ramp from 2ms to 4ms.
Here, we see the benefit of storing alpha with increased precision as an upscaled value. Alpha

is able to stay at and reach a small area around its equilibrium value. This causes very little
oscillation in general, but we also see that a small amount of noise can make it get consecutive

problems with the Linux implementation of DCTCP, it involves such a significant design change that we have had to
draw a line and place it beyond the scope of the present report.

Version 00B 28 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

1300

1400

1500

C
w

n
d

5.9.0-rc1v5.9.0-prr-bugfix

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

160

170

180

190

200

T
h

ro
u

gh
p

u
t

(M
b

p
s)

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

160 180 200 220 240 260 280 300

Timestamp (Seconds)

0.00

0.05

0.10

0.15

0.20

A
lp

h
a

DCTCP-Ps10tu

DCTCP-Ps10tU

DCTCP-Ps20tU

Figure 17: With a ramp AQM, an upscaled EWMA (blue or brown) reduces steady
state oscillation, but makes it more susceptible to noise, which can cause occasional
back-to-back reductions. The plots show cwnd, throughput and alpha time-series for
same three DCTCP implementations: as in fig. 15, but with a ramp AQM. The red
plot is the same as the red plot in fig. 16 for comparison.
Capacity: 200Mb/s; RTT: 91.8ms; AQM: ramp from 2ms to 4ms.

reductions. Such reductions happen when there is no reduction or the reduction is too small to
alleviate congestion. The magnitude of the reductions suggest that there is some noise causing a
rapid increase in congestion. The smaller oscillation in alpha and cwnd makes it more sensitive to
noise because it picks up on it more easily. When there is a regular oscillation, as when toggling is
off, noise can hit at different times in the oscillation cycle. If it hits when it is at the bottom, the
flow might not notice it. However, with increased precision, a flow will detect and react to it.
The DCTCP paper justifies using a step on the basis that,

‘Prior work [13], [9] on congestion control in the small buffer regime has observed that at
high line rates, queue size fluctuations become so fast that you cannot control the queue

18 Oct 2022 29 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

size, only its distribution. The physical significance of 𝛼 is aligned with this observation: it
represents a single point of the queue size distribution at the bottleneck link.’ [1]

However, just saying that a ramp might be no better than a step does not prove that a step is as
good as a ramp, and in practice using the on-off signal from a step makes the EWMA unnecessarily
slow to converge on an average of an ever-changing congestion signal. It also takes much longer to
detect that the signal has disappeared after available capacity increases, because the on-off cycle
makes it normal for the signal to disappear for tens (or even hundreds) of rounds at a time (about
24 rounds in fig. 16 & fig. 17).
If it is inevitable that a ramp will appear increasingly step-like as flow rate scales, it might be more

fruitful to ‘emulate a ramp’ at the sender. This can be done by dithering the smoothness of packet
pacing to induce a more gradual increase in marking as the queue approaches the step threshold.
This is beyond the scope of the present paper, but worth further investigation.

5.3 Interim Conclusions
A partial improvement to the latecomer disadvantage is to floor dctcp alpha at 16 (representing
16/1024 or 1.6%) by removing the toggle to zero at line 123 in listing 4. To an extent, this improves the
otherwise poor convergence rate and ensures that DCTCP reduces its unfairness against latecomers,
but at the expense of considerably more steady state oscillation and possible under-utilization. Also,
as flow rate increases over the years, flooring the EWMA at 16 will make the time between congestion
marks continually increase, in turn making DCTCP’s congestion control less responsive to change
(i.e. unscalable).
To reduce the window oscillations, it is possible to make the values below 16 reachable by storing

dctcp alpha in an upscaled variable, shifted by dctcp shift g (as implemented in the Prague CCA).
Then alpha value can be scaled down whenever it is used. Even if dctcp alpha is able to use values
from 1 to 15 it will still have an issue as capacity scales, because alpha values below 1/1024 will
not be not representable. This can be fixed by increasing the precision of alpha, which can be a
parameter to the module that can be adjusted in future if scalablity becomes an issue.
This upscaled and higher precision EWMA addressed the smoothing, but it was disappointing to

find that it did not address the latecomer disadvantage as effectively as just flooring dctcp alpha at
16. It is believed this is a symptom of an interaction between the burst sizing in the Linux sender
and burst marking in the step marking in Linux. This interaction focuses more marking on lower
rate flows, which causes the latecomer to reach a local equilibrium before it has converged. This is
investigated further in the next section (section 6).
We conjecture that flooring alpha at 16 appears to partially solve the latecomer disadvantage

because it fools all flows into thinking they are experiencing the same relatively high marking
probability, thus masking the marking bias against lower rate flows. Flooring alpha effectively turns
DCTCP into a classical congestion control, which applies a relatively large, fixed cwnd reduction on
the first sign of congestion. Although mimicking a Classical CCA avoids the latecomer disadvantage, it
also loses all the rapid control advantages of scalable CCAs, which are not needed in the steady-state
scenarios of the present paper, but they come to the fore in dynamic scenarios.
One thing seems absolutely clear, the toggling patch applied to DCTCP in 2015 has no merit and

should be reverted.
It is also clear that congestion marking at a step threshold causes cwnd to vary excessively —

much as a Classical CCA would. Using a ramp AQM instead results in a very smooth cwnd trace.

Version 00B 30 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

Therefore a ramp AQM seems preferable, or it might be sufficient to use a step in the network but
synthesize a gradual increase in marking as the queue grows by dithering pacing at the sender.
Via footnotes, we have also recommended investigation into two other changes to DCTCP’s EWMA

processing, which are being assessed separately because they are beyond the scope of this report:

∙ Continuing additive increase during CWR state (except on ACKs carrying congestion feedback),
as implemented in the Prague CC;
∙ Per-ACK clocking of the EWMA and per-ACK reduction of cwnd during CWR state [4].

Both these proposals illustrate how the change from an existence-based to extent-based response to
congestion needed a more radical overhaul of the DCTCP implementation, which still needs more of
the classical machinery stripped out.

18 Oct 2022 31 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

6 INTERACTION BETWEEN SCALABLE CCA’S &
AQM’S

The earlier experiments with various improvements on the DCTCP EWMA mitigated but could
not eliminate the latecomer disadvantage between identical DCTCP flows. This raised the suspicion
that at least part of the problem might be in the AQM, not the CCA. The working assumption is
that the AQM marking might be biased against flows arriving in smaller bursts.
Further investigation [3] identified the likely cause: the use of sojourn time as the metric for

queuing delay in the DCTCP AQM. The likely cause is not the use of queuing delay itself, but
using sojourn time to measure it. Although the sojourn time of a particular packet is measured at
dequeue, it measures the time to service the queue that was in front of the packet when it arrived.
Sojourn-based marking therefore indicates how other traffic affects each packet, not how each packet
affects other traffic. For that, one ought to measure the queue behind each packet when it departs.
This distinction becomes critical when flows of different burstiness are mixed. Consider a thought

experiment where the goal is two flows of equal rate. Then, if one arrives in bigger bursts, they will
arrive less often. The bigger the burst arriving at an empty queue, the longer some of it remains in
the queue. So packets in frequent small bursts will be much more likely to sit behind, not in front of
less frequent but larger bursts.
Then, marking based on sojourn time will be much more likley to mark the packets arriving in

small bursts, because they have a larger queue in front of them. The report on ‘Rapid Signalling of
Queue Dynamics’ [3] calls this the ‘Blame Shifting Problem’, because a sojourn-based AQM shifts
much of the blame for queuing away from the bursty traffic that is largely responsible and onto
smoother traffic that is largely blameless. The report proposes various ways of measuring the backlog
as a packet departs then estimating the likely worst-case queue delay of the tail packet behind it. It
uses the phrase ‘Expected Service Time’ or EST as a general name for any of these techniques.
The blame shifting problem of sojourn-based marking is likely to have a number of negative

connotations. In this section we focus on whether it is the cause of the latecomer disadvantage,
where an established Linux DCTCP flow has larger burst size than an identical Linux DCTCP flow
trying to push in. And we determine whether EST-based marking can eliminate or at least mitigate
the latecomer disadvantage.
For this, we implement an AQM algorithm that uses EST instead of sojourn time. We then test

two identical DCTCP flows arriving 5 s apart over this algorithm and compare the result with
sojourn-based marking. We also try the different variants of the DCTCP EWMA in each case.
For the readers convenience we have renamed the DCTCP variants used in this section:

LoRes Toggle EWMA (DCTCP-PS10Tu) the current default DCTCP implementation;
LoRes EWMA (DCTCP-PS10tu), as default except no toggle of alpha to 0;
HiRes EWMA (DCTCP-PS20tU), no toggle double precision alpha (1 in 220) and EWMA
stored upscaled.

In addition these variants all have a version with TSO disabled indicated by ”(wo TSO)” after its
name.
Each of the variants are prefixed by either ”EST” or ”SOJ”, meaning:

EST : the proposed expected service time metric;
SOJ : the sojourn time metric

Version 00B 32 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

0.99

1.00
U

ti
li

za
ti

on

EST-LoRes Toggle EWMA

SOJ-LoRes Toggle EWMA

EST-LoRes EWMA

SOJ-LoRes EWMA

EST-HiRes EWMA

SOJ-HiRes EWMA

10

20

30

Q
le

n
[p

k
ts

]

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

Mbps/ms

0.6

0.8

F
ai

rn
es

s

Figure 18: Over a range of link rates, EST seems to all-but eliminate the latecomer
disadvantage as long as alpha is not toggled to 0 (the two non-toggling EST cases are
hard to see, because they overlap each other along the 1.0 fairness index ceiling). The
plots show average Jain’s fairness index as well as utilization and queue length of two
identical flows started 5 s apart, for all six combinations of AQM metric and DCTCP
variant.
Capacity: varied; RTT: 36ms; AQM: step at 2ms.

In all of the experiments the AQM uses a step marking threshold at 2ms, and the marking is done
on dequeue.
We also test whether the size of the max burst delay affects the latecomer disadvantage. For this

we use TCP Prague, which already implements a parameter to set the max burst delay, whereas
DCTCP inherits the burst duration implemented for BBR, which was hard-coded. Again, for reader
convenience, we have given the resulting TCP Prague variants more understandable names, as
follows: variants:

prague-1ms has parameter value 10, meaning (1/210) s, which is just under 1ms;
prague-250us (default) has parameter value 12 or just under 250𝜇s;
prague-No burst has parameter value 20 or just under 1𝜇s, which effectively disables TSO over
the range of rates in our investigation.

6.1 DCTCP
The bottom rows of Figures 18 and 19 show average fairness between a pair of identical competing
flows started 5 s apart. All six combinations of CCA and AQM variants are tested, but each pair of
flows within one run uses the same variant.
EST seems to eliminate the latecomer disadvantage as long as alpha is not toggled to 0.13 In

contrast, the sojourn-based AQM seems to cause fairness issues in most scenarios. When capacity is

13Except for the uncharacteristic result at 82Mb/s, which might be due to some unfortunate synchronization effect.

18 Oct 2022 33 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

0.998

1.000
U

ti
li

za
ti

on

EST-LoRes Toggle EWMA

SOJ-LoRes Toggle EWMA

EST-LoRes EWMA

SOJ-LoRes EWMA

EST-HiRes EWMA

SOJ-HiRes EWMA

20

25

Q
le

n
[p

k
ts

]

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

Mbps/ms

0.0

0.5

F
ai

rn
es

s

Figure 19: Over a range of RTTs, EST seems to eliminate the latecomer disadvantage
as long as alpha is not toggled to 0 (the two non-toggling EST cases are again hard to
see along the 1.0 fairness index ceiling). The metrics and six combinations of set-up
are the same as in Figure 18
Capacity: varied; RTT: 36ms; AQM: step at 2ms.

low, the difference in TSO burst size becomes insignificant. So, whether EST or SOJ is used becomes
moot.
Utilization and queue length are also plotted as sanity checks.
The flows are both allowed to reach steady state by waiting 60 s before measurements start. For

each run, the metrics are calculated every two base round trips then averaged over a duration of
120 s. For each combination of AQM and CCA, five runs are plotted as points to show the spread,
then the line is plotted through the average of the five runs.
The metric used for fairness is Jain’s Fairness Index rather than the simple ratio between the flow

rates. This is because the ratio between one rate and another might toggle between more than 1
and less than 1, so averaging would hide a toggling inequality. In contrast, Jain’s index measures
how unequal flow rates are irrespective of which is greater. So it should be robust to averaging over
inversions.

6.2 TCP Prague
Figures 20 and 21 shows average utilization, queue length and fairness (jains) between two competing
flows with different CCA and AQM variants. This experiment was run to see if the choice of a 250us
burst size in TCP Prague eliminates the fairness problem for TCP Prague. It is clear that having a
burst of 250us or no burst at all eliminates or reduce the fairness issue. The figures also show that
TCP Prague would have had the same fairness issue if it had the same burst size as DCTCP (1ms).

Version 00B 34 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

0.99

1.00
U

ti
li

za
ti

on

EST-prague-1ms

SOJ-prague-1ms

EST-prague-250us

SOJ-prague-250us

EST-prague-No burst

SOJ-prague-No burst

20

40

Q
le

n
[p

k
ts

]

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

Mbps/ms

0.7
0.8
0.9

F
ai

rn
es

s

Figure 20: EST marking seems to fix the latecomer disadvantage over a sweep of link-
rates, particularly in combination with reduced burst duration (the fairness plots for
EST-prague-250 and TSO disabled all overlap along the 1.0 fairness ceiling). The plots
show average utilization, queue length and fairness for the two delay metrics at the
AQM (EST and sojourn time) and three different TSO burst sizes at the sender.
Capacity: varied; RTT: 36ms; AQM: step at 2ms.

0.995

1.000

U
ti

li
za

ti
on

EST-prague-1ms

SOJ-prague-1ms

EST-prague-250us

SOJ-prague-250us

EST-prague-No burst

SOJ-prague-No burst

25

30

Q
le

n
[p

k
ts

]

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

Mbps/ms

0.0

0.5

F
ai

rn
es

s

Figure 21: EST marking and lower burst size also seem to fix the latecomer disadvan-
tage over a sweep of RTTs (the fairness plots for EST-prague-250 and for low or no
TSO all overlap along the 1.0 fairness ceiling). The metrics and six combinations of
set-up are the same as in Figure 20
Capacity: 200Mb/s; RTT: varied; AQM: step at 2ms.

18 Oct 2022 35 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

0.99

1.00
U

ti
li

za
ti

on

EST-prague-1ms

SOJ-prague-1ms

EST-prague-250us

SOJ-prague-250us

EST-prague-No burst

SOJ-prague-No burst

20

40

Q
le

n
[p

k
ts

]

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

16/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

32/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

65/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

82/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

98/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

115/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

131/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

164/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

230/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

296/36.0

Mbps/ms

0.0

0.5

R
at

io

Figure 22: The same results as in Figure 20 showing that smaller burst size seems to
fix the latecomer disadvantage, except fairness is shown as a simple rate ratio.

0.995

1.000

U
ti

li
za

ti
on

EST-prague-1ms

SOJ-prague-1ms

EST-prague-250us

SOJ-prague-250us

EST-prague-No burst

SOJ-prague-No burst

25

30

Q
le

n
[p

k
ts

]

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/1.1

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/4.3

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/10.5

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/13.6

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/16.8

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/19.9

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/23.0

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/29.3

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/41.8

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

200/54.3

Mbps/ms

0.0

0.5

R
at

io

Figure 23: The same results as in Figure 21 showing that smaller burst size seems to
fix the latecomer disadvantage, except fairness is shown as a simple rate ratio.

Figures 22 and 23 show the same experiments as Figures 20 and 21, except the fairness metric
is the averaged ratio between the two flow rates (using a geometric mean, but otherwise the same
averaging approach).

Version 00B 36 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

Previously, use of Jain’s Fairness Index was justified on the grounds that merely averaging a rate
ratio can cancel itself out in cases where a rate imbalance remains relatively constant but toggles
between two flows. Here, we first check that there has been no toggling before showing the simple
rate ratio, because it is more numerically meaningful as a figure of merit. For instance, when Jain’s
Index is 1/2 for two flow (or 1/3 for three), it is not obvious that this means one flow is causing the
others to starve.

18 Oct 2022 37 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

7 CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions
We have shown that fixing the implementation of PRR in Linux by aligning the code with RFC 6937
leads to proper cwnd adjustment.
However, fixing this bug in PRR unmasks a latecomer disadvantage problem, where two long-

running flows can get stuck in a ‘local equilibrium’ with unequal rates.
It is possible to mitigate the latecomer disadvantage in some cases by setting a lower floor to

the average of ECN marking that DCTCP maintains. This probably works by making the queue
variations large enough to jolt the flows out of their local equilibrium so they drop into the global
equilibrium where rates are equal. However, the floor makes DCTCP respond with a window decrease
that is fixed at the set minimum rather than based on the extent of congestion. So, it effectively
turns DCTCP into a classical congestion control, losing all the advantages of a scalable control, such
as a short invariant recovery time between congestion signals and very low queue delay variation.
In preference to losing the benefits of scalable congestion control by just masking the latecomer

disadvantage, we believe we have tracked down the root cause. It is actually a cross-layer problem,
due to an interaction between the TSO burst sizing in Linux and the instantaneous (stateless) AQMs
used with DCTCP:

∙ Linux scales the size of TSO bursts in proportion to cwnd. So, a flow already using the capacity
sends in larger bursts, while a latecomer, sending more slowly while it tries to push in, keeps its
bursts smaller.
∙ We have found that an instantaneous AQM that applies ECN marking to packets based on their
own sojourn time perversely biases marking in favour of larger bursts and punishes smoother
traffic, which we call ‘blame shifting’.

When this TSO sizing interacts with this perverse AQM marking, it can be seen that the latecomer
will experience proportionately more ECN marking, which explains why it gets stuck at a lower rate.
A separate report [3] explains this ‘blame-shifting’ problem in more depth. It discusses criteria for

ensuring that marking probability increases with burstiness and suggests various design ideas for
attributing blame to the most bursty traffic. The present report assesses an implementation of one
of those ideas and finds that it appears to remove the latecomer disadvantage.
We also find that, if a solution to the blame-shifting problem is not implemented in the AQM,

then removing all the truncation and precision bugs from the EWMA actually makes the latecomer
disadvantage a little worse in steady state (i.e. with just two long-running flows and no background
traffic). This is because the biased congestion marking from the AQM is averaged and stored precisely
by the CCAs, with minimal noise to jolt them out of their local equilibrium.

7.2 Recommendations
(1) Apply the patch recommended to fix the Linux PRR bug.14 Strictly, this should be patched

after the blame-shifting problem has been addressed. However, even though there will no longer
be noise due to the PRR bug to mask the latecomer disadvantage, in many circumstances there
is enough noise from background traffic to do the same job.

14Actually, it was patched in May 2022 after we notified the maintainer with an early copy of this report [6]

Version 00B 38 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

(2) In immediate AQMs for scalable traffic, address the ‘blame-shifting problem’ of sojourn marking
(our own research on alternatives is ongoing and will be reported in future versions of [3]);

(3) Investigate whether dithering additive increase or burst size jolts flows out of their local
equilibrium and therefore mitigates the latecomer disadvantage, even when the AQM has not
been fixed;

(4) Remove the ’toggle to zero’ (line 123 in listing 4) and the blackholing of congestion feedback
(lines 130 & 131) from Linux DCTCP and any other Scalable CCAs (they are already removed
from Prague). A floor of 16/1024 should not be left in place of the toggle, otherwise incremental
deployment of a full solution will be hard in future (see earlier footnote5);

7.3 Further Work
∙ Completion of the evaluation of remedies to the ‘blame-shifting problem’ with sojourn marking,
as already highlighted above [3]
∙ Evaluation of further improvements to scalable CCAs for instance:
– Investigation of dithering additive increase or burst-size (e.g. by carrying the remainder after
rounding): i) in order to jolt flows out of any undesirable local equilibrium (as above) and
ii) in order to emulate the smooth marking behaviour of a ramp AQM, when there is a step
AQM at the bottleneck;

– Evaluation of continuing additive increase during CWR state;
– Evaluation of per-ACK EWMA and per-ACK congestion reduction to remove the clock
machinery lag in scalable congestion controls (see [4]).

18 Oct 2022 39 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar,

Sudipta Sengupta, and Sridharan Murari. 2010. Data Center TCP (DCTCP). SIGCOMM Comput. Commun.
Rev. 40, 4 (Aug. 2010), 63–74. https://doi.org/10.1145/1851275.1851192

[2] Dejene BoruOljira, Karl-Johan Grinnemo, Anna Brunstrom, and Javid Taheri. 2020. Validating the Sharing
Behavior and Latency Characteristics of the L4S Architecture. ACM SIGCOMM Computer Communication
Review 50, 2 (May 2020), 37–44. https://doi.org/10.1145/3402413.3402419

[3] Bob Briscoe. 2019. Rapid Signalling of Queue Dynamics. Technical Report TR-BB-2017-001; arXiv:1904.07044
[cs.NI]. bobbriscoe.net.

[4] Bob Briscoe. 2022. Removing the Clock Machinery Lag from DCTCP/Prague. Technical Report TR-BB-2020-002;
arXiv:2101.07727 [cs.NI]. bobbriscoe.net. https://arxiv.org/pdf/2101.07727

[5] Bob Briscoe, Koen De Schepper, Olga Albisser, JoakimMisund, Olivier Tilmans, Mirja Kühlewind, and Asad Sajjad
Ahmed. 2019. Implementing the ‘TCP Prague’ Requirements for L4S. In Proc. Netdev 0x13. The NetDev Society,
11. https://www.files.netdevconf.org/f/4d6939d5f1fb404fafd1/?dl=1

[6] Yuchung Cheng. 2022. tcp: improve PRR loss recovery. Commit: 9ad084d66619. (2022). https://git.kernel.org/
pub/scm/linux/kernel/git/netdev/net-next.git/commit/net/ipv4/tcp input.c?id=9ad084d66619

[7] Koen De Schepper, Olivier Tilmans, and Bob Briscoe. 2022. Prague Congestion Control. Internet Draft draft-
briscoe-iccrg-prague-congestion-control-01. Internet Research Task Force. https://datatracker.ietf.org/doc/html/
draft-briscoe-iccrg-prague-congestion-control-01 Work in Progress.

[8] Nandita Dukkipati, Matt Mathis, Yuchung Cheng, and Monia Ghobadi. 2011. Proportional Rate Reduction for
TCP. In Proc. ACM SIGCOMM Internet Measurement Conf. (IMC’11) (IMC ’11). Association for Computing
Machinery, New York, NY, USA, 155–170. https://doi.org/10.1145/2068816.2068832

[9] Frank Kelly, Gaurav Raina, and Thomas Voice. 2008. Stability and Fairness of Explicit Congestion Control
with Small Buffers. ACM SIGCOMM Computer Communication Review 38, 3 (jul 2008), 51–62. https:
//doi.org/10.1145/1384609.1384615

[10] Naeem Khademi, Michael Welzl, Grenville Armitage, and Gorry Fairhurst. 2018. TCP Alternative Backoff with
ECN (ABE). Request for Comments RFC8511. RFC Editor. https://tools.ietf.org/html/rfc8511

[11] Matt Mathis, Nandita Dukkipati, and Yuchung Cheng. 2013. Proportional Rate Reduction for TCP. RFC 6937.
(May 2013). https://doi.org/10.17487/RFC6937

[12] Szilveszter Nádas, Gergő Gombos, Ferenc Fejes, and Sándor Laki. 2020. A Congestion Control Independent L4S
Scheduler. In Proceedings of the Applied Networking Research Workshop (ANRW ’20). ACM, New York, NY,
USA, 45–51. https://doi.org/10.1145/3404868.3406669

[13] Gaurav Raina, Don Towsley, and DamonWischik. 2005. Part II: Control Theory for Buffer Sizing. ACM SIGCOMM
Computer Communication Review 35, 3 (July 2005), 79–82. https://doi.org/10.1145/1070873.1070885

[14] Andrew G. Shewmaker. 2015. tcp: allow dctcp alpha to drop to zero. Commit: c80dbe0. (2015). https:
//github.com/torvalds/linux/commits/master/net/ipv4/tcp dctcp.c

Version 00B 40 of 44 18 Oct 2022

https://doi.org/10.1145/1851275.1851192
https://doi.org/10.1145/3402413.3402419
https://arxiv.org/pdf/2101.07727
https://www.files.netdevconf.org/f/4d6939d5f1fb404fafd1/?dl=1
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/net/ipv4/tcp_input.c?id=9ad084d66619
https://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next.git/commit/net/ipv4/tcp_input.c?id=9ad084d66619
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://datatracker.ietf.org/doc/html/draft-briscoe-iccrg-prague-congestion-control-01
https://doi.org/10.1145/2068816.2068832
https://doi.org/10.1145/1384609.1384615
https://doi.org/10.1145/1384609.1384615
https://tools.ietf.org/html/rfc8511
https://doi.org/10.17487/RFC6937
https://doi.org/10.1145/3404868.3406669
https://doi.org/10.1145/1070873.1070885
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c
https://github.com/torvalds/linux/commits/master/net/ipv4/tcp_dctcp.c

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

A DCTCP AND ITS IMPLEMENTATION IN LINUX
DCTCP is an algorithm that can achieve high throughput and low latency at the same time. It
is able to do so because of two changes, one to the end-system and one to the network. In the
network long buffered tail drop queues are replaced by shallow buffered queues that mark packets
with explicit congestion experience (ECN) marks in the IP-header. The extent of these marks is
then used to reduce the congestion window proportionally to the extent of the marks in the sender.
The change to the sender reduce congestion window oscillation sufficiently to keep high utilization.
DCTCP is designed to work with an AQM that uses a step threshold to decide whether or not to

mark each packet. The queue occupancy at which the threshold is set affects latency and utilization.
If the threshold is set extremely shallow it can lead to under-utilization. Setting the threshold
too high cause latency to increase. There is no single ideal configuration. One can sacrifice some
utilization to get lower latency. The ideal configuration for keeping full utilization is to have the
oscillation in the queue length reach the minimum number of packets required to keep full utilization.
This way the latency is minimized and utilization is maximized.
Despite having been designed to work with a step AQM, DCTCP also works with probabilistic

AQMs. A probabilistic AQM can provide more a fine grained marking proportion to the sender that
can be used to reduce oscillation and thereby allow for reduction in queueing delay without reducing
utilization.
DCTCP maintains an exponential weighted moving average (EWMA) of the proportion of bytes

carrying explicit congestion notification. The average proportion is called alpha, and is denoted by 𝛼
below. Roughly every round-trip time 𝛼 is updated according to the following equation. The start
and completion of a round-trip time is stored and detected using sequence numbers.

𝛼 = (1− 𝑔) * 𝛼 + 𝑔 * 𝐹 (1)

where

𝑔 is the EWMA factor. The default value in DCTCP is 1
16
(0.0625).

𝐹 is the measured Fraction of bytes carrying ECN marks of the delivered packets over the
previous round-trip time. 𝐹 ∈ [0, 1]

Every time an ack carrying ECN is received, and there has been no reaction to ECN the past
round-trip time, the congestion window, 𝑊 , is reduced by 𝛼 *𝑊/2.

𝑊 ← 𝑊 − 𝛼 *𝑊
2

(2)

The congestion window is reduced at most once per round-trip time. On each ack the congestion
window is increased by 1/𝑊 . This is more commonly known as additive increase. The Linux
implementation implements this increase as a separate count variable that is used to increase 𝑊 by
1 once the count grows big enough. The aggregate change in congestion window in a round with a
reaction to congestion is thus

𝑊 ← 𝑊 + 1− 𝛼 *𝑊
2

(3)

A DCTCP flow is therefore in equilibrium when 𝛼 = 2/𝑊 resulting in a net change of 0 over a
round-trip time with a reaction.

18 Oct 2022 41 of 44 Version 00B

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

Listing 4 on 15 shows relevant parts of the current (Sep 2021) DCTCP implementation in Linux.
In line 108 the congestion window is reduced based on the current value of 𝛼 and 𝑊 . Because kernel
code must not use floating point operations dctcp alpha is scaled by a factor of 1024, or 10 bit-shifts
to the left. That is why the result of the multiplication is shifted by 10 to scale it down and shifted
by 1 to divide it by 2.
Line 123 executes the first part of the EWMA, where 𝛼 is subject to a decay. We discuss why this

particular line is problematic for the scalability of DCTCP in section 5.1.
The calculation of the fraction of ECN-marked bytes, 𝐹 , occurs on line 130 and 131. The number

of bytes marked with congestion experience (CE) is scaled and divided by the total number of
bytes delivered. The problem with those lines black-holing congestion feedback is also described in
section 5.1. Finally, at line 139 alpha is updated with its new value.

A.1 Scalability
DCTCP is called a scalable CCA because its steady-state sawtooth does not grow as capacity
increases. In fact, if the proportion of marked bytes stored in 𝛼 exactly matches 2/𝑊 there is
theoretically no oscillation at all because the reduction and increase each round-trip time cancel each
other. They key to scalability is that the oscillation can be kept constant when capacity increases.
An increase in capacity requires a increase in 𝑊 to keep full utilization, but as long as 𝛼 *𝑊 stays
the same the oscillation will stay the same. We have that

𝛼 =
2

𝑊
(4)

Alpha must decrease to keep the algorithm in equilibrium as 𝑊 increases with increasing capacity.
If 𝑎𝑙𝑝ℎ𝑎 fails to decrease the oscillation grows and fails to provide theoretical scalability. This puts a
requirement on the representation of 𝛼 in any implementation of a scalable CCA. It must be able to
represent very small values of 𝛼.
In practice it is impossible to keep alpha at the exact equilibrium value, and the equilibrium value

is not static. Representability is not enough to keep DCTCP scalable in practice, the adjustments
on alpha needs to be small as well. As alpha decreases an implementation should make smaller and
smaller adjustments to alpha so that noise does not result in unwanted oscillation.
Even with a perfect representation of alpha in the CCA the marking proportion from the network

has to decrease as capacity increases to keep window oscillation the same. Theoretically, the proportion
can decrease because, by definition, there are more packets in a round as the window increases. So,
as long as the same average number of packets per round are marked (specifically an average of 2
marks per RTT), the proportion will decrease. However, this is hard to achieve with a step threshold
because it tends to induce an on-off pattern of marking with whole rounds marked or not (see the
full discussion of this in section 5.2.2 about using a ramp for marking).

B MACHINE CONFIGURATION
We have run experiments on two separate testbeds. The difference between them is mainly the
hardware.

B.1 Wide area network testbed
The testbed consist of three machines and we will call them client, server and aqm.

Version 00B 42 of 44 18 Oct 2022

Disentangling Flaws in Linux DCTCP TR-UIOJM-2022-004

Both the client and the server runs Ubuntu 18.04.4 with a 5.9.0-X Linux kernel. X represent a
specific version. The aqm runs Ubuntu 16.04.5 with a 5.4.0-rc3 Linux kernel. Each machine has a 1
Gigabit Intel I350 Gigabit network card. The driver is igb version 5.9.0-X. The firmware is version
1.63. The client and the server has a 2-port version of the card, while the aqm has a 4-port version
of the card.
The machines are connected in serial and through a switch. The switch makes it possible to have

management traffic between the machines without interfering with the experimental traffic.
Delay and rate limiting is added by tc-netem and tc-htb respectively on the aqm machine. To

avoid timer related issues that we have previously experienced using tc-htb and tc-netem we set the
cpu scaling governor to performance and the highest C-state to 0 on every cpu on the aqm.
Address resolution protocols, arp, tables are static. This eliminates possible stops in transmission

due to address resolution.
The following interface capabilities are turned off on every interface using ethtool: gso, tro, gro,

tx-gso-partial, autoneg, sg. In addition rx-usecs and tx-usecs are set to 0 on all the intefaces.
The following sysctl settings are set to 1: tcp no metrics save, tcp low latency, tcp tw reuse, tcp ecn.
The following sysctl settings are set to 0: tcp autocorking, tcp fastopen, tcp ecn fallback.
Memory limits are set to 8388608 through the following sysctl settings: rmem max, wmem max,
rmem default, wmem default, tcp rmem, tcp wmem, tcp mem

B.2 Data centre testbed
The testbed we used for data centre like experiments consist of three machines connected in serial,
called client, server and aqm. Management traffic avoids experimental traffic by going through a
separate network. Delay and rate limiting is added by tc-netem and tc-htb respectively on the aqm
machine.
All three machines are running Debian stretch (9.2). The aqm machine runs Linux 4.9.0, while the

client and server runs 5.9.0-X.
All three machines have a 10 Gigabit X550T Intel Ethernet network card. The driver is ixgbe

version 5.9.0-X. The firmware is presented as 0x80000492 in lshw.
The following sysctl settings are set to 1: tcp no metrics save, tcp low latency, tcp tw reuse, tcp ecn.
The following sysctl settings are set to 0: tcp fastopen, tcp ecn fallback.
Memory limits are set to 8388608 through the following sysctl settings: rmem max, wmem max,
rmem default, wmem default, tcp rmem, tcp wmem, tcp mem

C CODE DETAILS
The Prague implementation used has commit ID 3cc3851880a115.

C.1 Diffs for DCTCP implementations

15https://github.com/L4STeam/linux/commit/3cc3851880a1b8fac49d56ed1441deef2844d405

18 Oct 2022 43 of 44 Version 00B

https://github.com/L4STeam/linux/commit/3cc3851880a1b8fac49d56ed1441deef2844d405

TR-UIOJM-2022-004 Disentangling Flaws in Linux DCTCP

Name PRR TSO/GSO Alpha precision (bits) Alpha floored Upscaled

DCTCP-PS10Tu (a) yes yes 10 yes no
DCTCP-pS10Tu (b) no yes 10 yes no
DCTCP-Ps10Tu (c) yes no 10 yes no
DCTCP-PS20tU (d) yes yes 20 no yes
DCTCP-pS20tU (e) no yes 20 no yes
DCTCP-PS10tu (f) yes yes 10 no no
DCTCP-ps20tU (i) no no 20 no yes
DCTCP-Ps10tu (j) yes no 10 no no
DCTCP-Ps20tU (k) yes no 20 no yes
DCTCP-pS10tu (l) no yes 10 no no
DCTCP-ps10tu (m) no no 10 no yes
DCTCP-ps10Tu (n) no no 10 yes no
DCTCP-Ps10tU (o) yes no 10 no yes

Table 3: Tested DCTCP variants and their differences. The names of each variant
provide clickable links to the diff of each wrt. the DCTCP code (as of 1 Sep 2021).

Version 00B 44 of 44 18 Oct 2022

https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_a_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_b_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_c_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_d_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_e_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_f_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_i_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_j_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_k_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_l_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_m_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_n_diff.txt
https://bitbucket.org/joakimmisund/phd-shared-documents/src/master/papers/prr-bug/paper/diffs/tcp_dctcp_o_diff.txt

	Abstract
	1 Introduction
	1.1 Roadmap

	2 Methodology
	2.1 DCTCP variants
	2.2 AQM variants

	3 Bug and issue in PRR
	3.1 Bug: Unintentional cwnd decrease during CWR
	3.2 PRR bug: Discussion
	3.3 PRR & TCP Prague
	3.4 To PRR, or not to PRR, with Scalable CCAs
	3.5 PRR Bug: Conclusion

	4 Latecomer disadvantage
	4.1 Dependency of latecomer disadvantage on RTT
	4.2 Latecomer disadvantage: Potential remedies

	5 Removing the Toggle of Alpha to Zero
	5.1 Toggling alpha to zero: Problem
	5.2 Toggling alpha to zero: Evaluation
	5.3 Interim Conclusions

	6 Interaction between Scalable CCA's & AQM's
	6.1 DCTCP
	6.2 TCP Prague

	7 Conclusions & Recommendations
	7.1 Conclusions
	7.2 Recommendations
	7.3 Further Work

	References
	A DCTCP and its Implementation in Linux
	A.1 Scalability

	B Machine configuration
	B.1 Wide area network testbed
	B.2 Data centre testbed

	C Code details
	C.1 Diffs for DCTCP implementations

