
‘Data Centre to the Home’:
Deployable Ultra-Low Queuing Delay for All

Koen De Schepper† Olga Bondarenko
∗
‡ Ing-Jyh Tsang† Bob Briscoe‡

†Nokia Bell Labs, Belgium ‡Simula Research Laboratory, Norway
†{koen.de_schepper|ing-jyh.tsang}@nokia.com ‡{olgabo|bob}@simula.no

ABSTRACT
Traditionally, ultra-low queueing delay and capacity-
seeking are considered mutually exclusive. We intro-
duce an Internet service that offers both: Low Latency
Low Loss Scalable throughput (L4S). Therefore it can
incrementally replace best efforts as the default service.
It uses ‘Scalable’ congestion controls, e.g. Data Centre
TCP. Under a wide range of conditions emulated on a
testbed using real residential broadband equipment, it
proved hard not to get remarkably low (sub-millisecond)
average queuing delay, zero congestion loss and full uti-
lization. To realize these benefits we had to solve a
hard problem: how to incrementally deploy controls like
DCTCP on the public Internet. The solution uses two
queues at the access link bottleneck, for Scalable and
‘Classic’ (Reno, Cubic, etc.) traffic. It is like a semi-
permeable membrane, isolating their latency but cou-
pling their capacity into a single resource pool. We im-
plemented this ‘DualQ Coupled AQM’ as a Linux qdisc
to test our claims. Although Scalable flows are much
more aggressive than Classic, the AQM enables balance
(TCP ‘fairness’) between them. However, it does not
schedule flows, nor inspect deeper than IP. L4S packets
are identified using the last ECN codepoint in the IP
header, which the IETF is in the process of allocating.

CCS Concepts
�Networks → Cross-layer protocols; Packet
scheduling; Network performance analysis; Pub-
lic Internet; Network resources allocation;

∗The first two authors contributed equally

Under submission. Please do not distribute.
© 2017, the authors/owners

ACM ISBN .

DOI:

Keywords
Internet, Performance, Queuing Delay, Latency, Scal-
ing, Algorithms, Active Queue Management, AQM,
Congestion Control, Congestion Avoidance, Congestion
Signalling, Quality of Service, QoS, Incremental De-
ployment, TCP, Evaluation

1. INTRODUCTION
With increases in bandwidth, latency is becoming the

critical performance factor for many, if not most, appli-
cations, e.g. Web, voice, conversational and interactive
video, finance apps, online gaming, cloud-based apps,
remote desktop. Latency is a multi-faceted problem
that has to be tackled on many different fronts [9] and
in all the different stages of application delivery—from
data centres to access links and within end systems.

The aspect this paper addresses is the variable de-
lay due to queuing. Even state-of-the art Active Queue
Management (AQM) [38, 23] can only bring this down
to roughly the same order as a typical base round-trip
delay. This is because bottlenecks are typically in the
most numerous edge access links where statistical flow
multiplexing is lowest. And a single TCP flow will un-
derutilize a link unless it can buffer about a round trip
flight of data.

Queuing delay is intermittent, only occurring when
a sufficiently long-running capacity-seeking flow (e.g.
TCP) happens to coincide with interactive traffic [24].
However, intermittent delays dominate experience, and
many real-time apps adapt their buffering to these in-
termittent episodes.

Our main contribution is to keep queueing delay
extremely low (sub-millisecond) for all of a user’s In-
ternet applications. A differentiated service (Diffserv)
class such as EF [15] can provide low delay if limited to
a fraction of the link’s traffic. Instead, we propose a new
service that accommodates ‘greedy’ (capacity-seeking)
applications that want both full link utilization and low
queuing delay, so it can incrementally replace the de-
fault best efforts service. The new service effectively
removes congestion loss as well, so it is called Low La-
tency, Low Loss, Scalable throughput (L4S).

L4S works because senders use one of the family of

‘Scalable’ congestion controls (§ 2.1 for the rationale).
In contrast, we use the term ‘Classic’ for controls like
TCP Reno and Cubic, where control becomes slacker as
rate scales.

For evaluation we configure the host OS to use Data
Centre TCP (DCTCP [1]), which is a widely available
scalable control. We emphasize that the L4S service is
not just intended for DCTCP, but also for a range of
Scalable controls, e.g. Relentless TCP [34] and future
scalable variants of QUIC, SCTP, real-time protocols,
etc. In order to test one change at a time, we focus this
paper on network-only changes, and use DCTCP, ‘as
is’. Our extensive experiments over a testbed using real
data-centre and broadband access equipment and mod-
els of realistic traffic strengthen confidence that DCTCP
would work very well over the public Internet.

However, DCTCP will need some safety (and per-
formance) enhancements for production use, so a large
group of DCTCP developers has informally agreed a
list dubbed the ‘TCP Prague’ requirements (§ 5.2) to
generalize from the otherwise confusing name.

Our second contribution is a solution to the de-
ployability of Scalable controls like DCTCP. It is a com-
mon misconception that DCTCP is tailored for data
centres, but the name merely emphasizes that it should
not be deployed outside a controlled environment; it is
too aggressive to coexist with existing ‘Classic’ traffic
so a single admin is expected to upgrade all senders,
receivers and bottlenecks at once.

We propose the ‘Dual Queue Coupled AQM’ that can
be incrementally added at path bottlenecks to solve this
‘coexistence’ problem. It acts like a semi-permeable
membrane. For delay it uses two queues to isolate L4S
traffic from the Classic queue. But for throughput, the
queues are coupled to appear as a single resource pool.
So, for n aggressive L4S flows and m TCP-friendly Clas-
sic flows, each flow gets roughly 1/(n+m) of the capac-
ity. The high-level idea of coupling is that the L4S queue
emits congestion signals more aggressively to counter-
balance the more aggressive response of L4S sources.

Balance between microflows should be a policy choice
not a network default (§ 2.3), so we enable but do not en-
force it. And coexistence between DCTCP and Classic
flows is achieved without the network inspecting flows
(no deeper than the IP layer). We have also tested that
the L4S service can cope with a reasonable proportion
of unresponsive traffic, just as best efforts copes with
unresponsive streaming, VoIP, DNS etc.

The two queues are for transition, not scheduling pri-
ority. So low L4S delay is not at the expense of Classic
performance and delay remains low even if a high load
of solely L4S traffic fills the link.

Given access networks are invariably designed to bot-
tleneck in one known location, the AQM does not have
to be deployed in every buffer. Most of the benefit
can be gained by deployment at the downstream queue
into the access link, and home gateway deployment ad-
dresses the upstream. § 5 discusses how a Scalable con-

trol like DCTCP falls back to Reno if it encounters
a non-L4S bottleneck. It also discusses wider deploy-
ment considerations, including other deployment sce-
narios such as coexistence between DCTCP and Classic
TCP in heterogeneous or interconnected data centres.

L4S faces a very similar deployment problem to clas-
sic Explicit Congestion Notification (ECN [39]). How-
ever, we have learned from the ECN experience. To
overcome the risk a first mover faces in kick-starting a
multi-party deployment, we have attempted to ensure
that the performance gain is dramatic enough to enable
valuable new applications, not just a relatively marginal
performance improvement.

The dramatic improvement of L4S has been demon-
strated [7] by simultaneously running many apps that
are both bandwidth-hungry and latency-sensitive over
a regular 40Mb/s broadband access link. Two apps
transmitted a user’s physical movements (virtual reality
goggles and pan/zoom finger gestures on a panoramic
interactive video display) to cloud-based video servers
over a broadband access (base delay 7 ms). The queuing
delay of every packet was so low that the scenes that
were generated on the fly and streamed back to the user
seemed as if they were local and natural. Whereas with-
out L4S, there was considerable lag and jerkiness. Other
users were downloading streaming video, bulk files and
running a gaming benchmark, all in the same queue,
and mean per-packet queuing delay was around 500µs.

Our third contribution is to ensure that the low
queuing delay of L4S packets is preserved during over-
load from either L4S or Classic traffic, and neither can
harm the other more than they would in a single queue.

Our fourth contribution is to ensure that the
AQM can be deployed in any public Internet access net-
work with zero configuration.

Our fifth contribution is extensive quantitative
evaluation of the above claims: i) dramatically reduced
delay and variability without increasing other impair-
ments; ii) ‘do no harm’ to Classic traffic; iii) window
balance between competing Scalable and Classic flows;
and iv) overload handling (see § 4).

2. RATIONALE

2.1 Why a Scalable Congestion Control?
A congestion controller is defined as ‘Scalable’ if the

rate of congestion signals per round trip, c, does not
decrease as bandwidth-delay product (BDP or window)
scales. The flow rate saw-tooths down whenever a con-
gestion signal is emitted. So, by definition, the average
sawtooth duration (a.k.a. recovery time) of a scalable
control does not grow as rate scales.

TCP Cubic scales better than Reno, but it is still
not fully scalable. For instance, for every 8-fold rate
increase the average Cubic sawtooth duration doubles
while its amplitude increases 8-fold, which is the cause
of growing delay variation. For instance, between 100

and 800 Mb/s, Cubic’s sawtooth recovery time expands
from 250 round trips to 500 round trips (assuming base
RTT=20 ms). In contrast, whatever the rate, the av-
erage recovery time of a DCTCP sawtooth remains in-
variant at just half a round trip.

We use a Scalable congestion control because, unlike
Classic TCP algorithms, this implies:

1. control does not slacken as the window scales;
2. variation of queuing and/or under-utilization,

need not increase with scale (Figure 1).

Figure 1: Data Centre TCP: Intuition

In the steady state, the number of signals per round is
the product of segments per round W and the proba-
bility p that a segment carries a signal, i.e. c = pW .
Formulas for the steady-state window, W , can be de-
rived for each congestion controller (see § 3.2). Each
formula is of the form W ∝ 1/pB , where B is a char-
acteristic constant of the algorithm [4] (e.g. B = 1/2 for
TCP Reno). So it is straightforward to state the above
scalability condition in terms of B by substituting for p
in the above formula for c:

c ∝W (1 − 1/B).

Therefore, B ≥ 1 defines a control as Scalable.
For DCTCP, B ≥ 1, and DCTCP with probabilis-

tic marking has B = 1 (see § 3.2) so the steady-state
signalling rate is scale-invariant. However, the dynamic
behaviour of DCTCP is not scalable, e.g. DCTCP’s win-
dow update algorithm is unscalable by the definition
in [29]. However, our AQM supports any control with
a steady state that is scalable, so we are confident that
solutions to DCTCP’s problems (e.g. [44]) will be able
to evolve and co-exist with today’s DCTCP, without a
need for further network changes.

2.2 Why ECN?
Explicit Congestion Notification (ECN [39]) is purely

a signal, whereas drop is both an impairment and a
signal, which compromises signalling flexibility. ECN is
essential to the L4S service, because:

1. A Scalable control’s finer (more aggressive) saw-
teeth imply a higher signalling rate, which would

be untenable as loss, particularly during high load;
2. If the queue grows, a drop-based AQM holds back

from introducing loss in case it is just a sub-RTT
burst, whereas it can emit ECN immediately, be-
cause it is harmless.

This last point significantly reduces typical signalling
delay, because with drop, the network has to add
smoothing delay but it does not know each flow’s RTT,
so it has to smooth over a worst-case (inter-continental)
RTT, to avoid instability for worst-case RTT flows.
Whereas, the sender knows its own RTT, which it can
use as the appropriate time constant to smooth the net-
work’s unsmoothed ECN signals [2] (and it can choose
to respond without smoothing, e.g. in slow start).

Therefore, we require that Scalable traffic is ECN-
capable, which we can also use to classify Scalable pack-
ets into the L4S queue (see § 3).

Irrespective of L4S, ECN also offers the obvious la-
tency benefit of near-zero congestion loss, which is of
most concern to short flows [40]. This removes retrans-
mission and time-out delays and the head-of-line block-
ing that a loss can cause when a single TCP flow carries
a multiplex of streams.

2.3 Why Not Per-Flow Queues?
Superficially, it might seem that per-flow queuing (as

in FQ-CoDel) would fully address queuing delay; it is
designed to isolate a latency-sensitive flow from the de-
lays induced by other flows. However, that does not
protect a latency-sensitive flow from the saw-toothing
queue that a Classic TCP flow will still inflict upon it-
self. This is important for the growing trend of interac-
tive video-based apps that are both extremely latency-
sensitive and capacity-hungry, e.g. virtual and aug-
mented reality, remote presence.

It might seem that self-inflicted queuing delay should
not count. To avoid delay in a dedicated remote queue,
a sender would have to hold back the data, causing the
same delay, just in a different place. It seems preferable
to release the data into a dedicated network queue; then
it will be ready to go as soon as the queue drains.

However, this logic applies i) if and only if the sender
somehow knows that the bottleneck in question imple-
ments per-flow queuing and ii) only for non-adaptive
applications. Modern applications, e.g. HTTP/2 [5] or
the panoramic interactive video app described in § 1,
suppress lower priority data, depending on the progress
of higher priority data sent already. To adapt how much
they send, they need to maintain their self-induced
send-queue locally, not remotely; because once optional
data is in flight, they cannot suppress it.

As well as not solving self-induced latency, there
are further well-rehearsed arguments against per-flow
scheduling: i) it cannot know whether flow rate varia-
tions are deliberate, e.g. complex video activity ; ii) it
cannot know (without prohibitive complexity) whether
a flow using more, or less, than an equal share of a user’s
own capacity is intentional, or even mission-critical; iii)

it needs to inspect transport layer headers (prevent-
ing transport evolution); and iv) it requires many more
queues and supporting scheduling structures.

Therefore we aim to reduce queuing delay without
per-flow queuing. That does not preclude adding a per-
flow policer, as a separate policy option.

3. SOLUTION DESIGN
The solution will be explained in two passes. The

first pass introduces the overall structure (§ 3.1). Then
details of each aspect are given in a second pass, specifi-
cally: how coexistence between L4S and Classic flows is
achieved (§ 3.2); how the low latency of the L4S service
is isolated from Classic (§ 3.3); how overload is handled
(§ 3.4); and an overview of the whole implementation in
pseudocode (§ 3.5).

3.1 Solution Structure
L4S and Classic traffic have opposing delay require-

ments. The first design goal of L4S traffic is ultra-low
queuing delay. Whereas, if the number of flows at the
bottleneck is small, Classic congestion controllers (CCs)
need a significant queue to avoid under-utilization. One
queue cannot satisfy these opposing goals, so we use two
separate queues.

Packets are classified between the two queues based
on the 2-bit ECN field in the IP header. Classic sources
set the codepoints ‘ECT(0)’ or ‘Not-ECT’ depending on
whether they do or do not support standard (‘Classic’)
ECN [39]. L4S sources ensure their packets are classified
into the L4S queue by setting ‘ECT(1)’, which is an
experimental ECN codepoint being redefined for L4S
(see § 5.1).

An L4S CC such as DCTCP achieves low latency, low
loss and low rate variations by driving the network to
give it frequent ECN marks. A Classic CC (TCP Reno,
Cubic, etc.) would starve itself if confronted with such
frequent signals.

So the second design goal is coexistence between Clas-
sic and L4S congestion controllers [26], meaning rough
balance between their steady-state packet rates per
RTT (a.k.a. TCP-fairness or TCP-friendliness). There-
fore, we couple the congestion signals of the two queues
and reduce the intensity for Classic traffic to compen-
sate for its stronger response to each signal, in a similar
way to the single-queue coupled AQM in [16].

Introducing two queues creates a new problem: how
often to schedule each queue. We do not want to sched-
ule based on the number of flows in each, which would
introduce all the problems of per-flow queuing (§ 2.3).
Instead, we allow the end-systems to ‘schedule’ them-
selves in response to the congestion signals from each
queue. However, whenever there is contention we give
the L4S queue priority, because L4S sources can tightly
control their own delay. Nonetheless, to prevent Classic
starving, priority is conditional on the delay difference
between the two queues.

Figure 2: Dual Queue Coupled AQM

The schematic in Figure 2 shows the whole DualQ
Coupled AQM. with the classifier and scheduler as the
first and last stages. In the middle, each queue has its
own native AQM that determines dropping or marking
even if the other queue is empty.

3.2 Coupled AQM for Window Balance
To support co-existence between the Classic (C) and

L4S (L) congestion control families, we start with the
equations that characterize the steady-state window,
W , of each as a function of the loss or ECN-marking
probability p. Then, like [16], we set the windows to be
equal to derive the coupling relationship between the
congestion signals for C and L.

We use Reno and DCTCP for C and L. We use Reno
because it is the worst case (weakest). We can ignore
dynamics, so we use the simplified Reno equation from
[35]. For L4S, we do not use the equation from the
DCTCP paper [1], which is only appropriate for step
marking. Instead, we use the DCTCP equation that
is appropriate to our coupled AQM, where marking is
probabilistic, as derived in Appendix A of [16]. For
balance between the windows, Wreno = Wdc, which be-
comes (1) by substituting from each window equation.
Then we rearrange into a generalized relationship for
coupling congestion signals in the network (2):√

3

2preno
=

2

pdc
(1) pC =

(pL
k

)2
, (2)

where coupling factor k = 2
√

2/3 = 1.64 for Reno.
Appendix A of [16] shows that TCP Cubic [22] will be

comfortably within its Reno compatibility mode for the
‘Data Centre to the Home’ scenarios that are the focus
of this paper. The coupling formula in (2) also applies
when the Classic traffic is TCP Cubic in Reno mode
(‘CReno’), except it should use k = 2/1.68 = 1.19.

To avoid floating point division in the kernel we round
to k = 2. In all our experiments this proves to be a suffi-
ciently accurate compromise for any Reno-friendly CC.
It gives a slight window advantage to Reno, and a little
more to CReno. However, any L4S source gives itself a
counter-advantage by virtue of its shallower queue. So
L4S achieves a higher packet rate with the same window
because of it lower RTT. We do not expend effort coun-

tering this rate imbalance in the network—the proper
place to address this is to ensure L4S sources will be
less RTT-dependent (see § 5.2).

The coupling is implemented by structuring the AQM
in two stages (Figure 2). First what we call a ‘Base
AQM’ outputs the internal probability p′. Then p′ is
transformed depending on which traffic it is applied to.
For Classic traffic it is squared, pC = (p′)2. Whereas for
L4S traffic it is applied linearly, pL = k∗p′. Substituting
for p′ from the latter to the former proves that pL and
pC will be coupling by equation (2) as required.

Diversity of Base AQMs is possible and encouraged.
Two have been implemented and tested [17]: a variant
of RED and a proportional integral (PI) AQM. Both
control queuing time not queue size, given the rate of
each queue varies considerably [33, 37]. This paper uses
the latter, because it performs better.

[16] also couples two AQMs to enable coexistence of
different CCs, but within one queue, not across two. It
proves theoretically and experimentally that a PI con-
troller is a robust base AQM. It directly controls a scal-
able control like DCTCP (rate proportional to 1/p′).
And it shows that squaring the output of a PI controller
is a more effective, more principled and simpler way
of controlling TCP Reno (rate proportional to 1/

√
p′)

than PI Enhanced (PIE [38]). It shows that the piece-
wise lookup table of scaling values used by PIE was just
a heuristic way of achieving the same effect as squaring.

3.3 Dual Queue for Low Latency
Often, there will only be traffic in one queue, so each

queue needs its own native AQM. The L4S queue keeps
delay low using a shallow marking threshold (T), which
has already been proven for DCTCP. T is set in units of
time [33, 3] with a floor of two packets, so it auto-tunes
as the dequeue rate varies. On-off marking may [13] or
may not [32, §5] be prone to instability. But to test one
change at a time we deferred this to future research.

If there is traffic in both queues, an L4S packet can
be marked either by its native AQM or by the coupled
AQM (see the OR symbol in Figure 2). However, the
coupling ensures that L4S traffic generally only touches
the threshold when it is bursty or if there is insufficient
Classic traffic.

Note that the L4S AQM emits ECN marks imme-
diately and the sender is expected to do any necessary
smoothing. Whereas Classic congestion signals are sub-
ject to smoothing delay in the network.

We use what we call a time-shifted FIFO sched-
uler [36] to decide between the head packets of the two
queues. It selects the packet with the earliest arrival
timestamp, after subtracting a constant timeshift to
favour L4S packets. Normally, this behaves like a strict
priority scheduler, but an L4S packet loses its priority
if the extra delay of the leading Classic packet exceeds
the timeshift. This protects Classic traffic from unre-
sponsive L4S traffic or long L4S bursts, even ensuring a
new Classic flow can break into a standing L4S queue.

3.4 Overload Handling
Having introduced a priority scheduler, during over-

load we must ensure it does no more harm to lower
priority traffic than a single queue would.

Unresponsive traffic below the link rate just subtracts
from the overall capacity, irrespective of whether it clas-
sifies itself as low (L4S) delay or regular (Classic) delay.
Then the coupled AQM still enables other responsive
flows to share out the remaining capacity by inducing
the same balanced drop/mark probability as they would
in a single queue with the same capacity subtracted.

To handle excessive unresponsive traffic, we simply
switch the AQM over to using the Classic drop prob-
ability for both queues once the L4S marking proba-
bility saturates at 100%. By equation (2) this occurs
once drop probability reaches (100%/k)2, which is 25%
if k = 2. When a DCTCP source detects a drop, it al-
ready falls back to classic behaviour, so balance between
flow rates is preserved.

The native L4S AQM also continues to ECN-mark
packets whenever its queue exceeds the threshold, so
any responsive L4S traffic maintains the ultra-low queu-
ing delay of the L4S service.

If there are no packets in the Classic queue, the base
AQM continues to evolve p′ using the L4S queue. As
soon as something starts to overload the L4S queue,
this ensures the correct level of drop, given L4S sources
fall back to a Classic response on detecting a drop.
Nonetheless, with solely normal L4S sources, the L4S
queue will stay shallow and drive the contribution from
the base AQM (k ∗ p′) to zero.

3.5 Linux qdisc Implementation

Algorithm 1 Enqueue for Dual Queue Coupled AQM

1: stamp(pkt) . Attach arrival time to packet
2: if lq.len() + cq.len() >L then
3: drop(pkt) . Drop packet if Q is full
4: else
5: if lsb(ecn(pkt))==0 then . Not ECT or ECT(0)
6: cq.enqueue(pkt) . Classic
7: else . ECT(1) or CE
8: lq.enqueue(pkt) . L4S

Algorithm 2 Dequeue for Dual Queue Coupled AQM

1: while lq.len() + cq.len() >0 do
2: if lq.time() + D ≥ cq.time() then
3: lq.dequeue(pkt) . L4S
4: if (lq.time() > T) ∨ (pL > rand()) then
5: mark(pkt)

6: else
7: cq.dequeue(pkt) . Classic
8: if pC > rand() then
9: if ecn(pkt)==0 then . Not ECT

10: drop(pkt) . Squared drop
11: continue . Redo loop
12: else . ECT(0)
13: mark(pkt) . Squared mark

14: return(pkt) . return the packet, stop here

Algorithms 1 & 2 summarize the per packet enqueue

and dequeue implementations of DualPI2 as pseudocode
For clarity, overload and saturation logic are omitted.
The full code is available as the Dualq option to the
PI2 Linux qdisc implementation.1 On enqueue, packets
are time-stamped and classified. On dequeue, line 2 im-
plements the time-shifted FIFO scheduler. It takes the
packet that waited the longest, after adding time-shift
D to the L4S queuing time. If an L4S packet is sched-
uled, line 4 marks the packet either if the L4S threshold
is exceeded, or if a random marking decision is drawn
according to the probability pL. If a Classic packet is
scheduled, line 8 decides whether to emit a congestion
signal with probability pC . Then line 9 checks whether
the Classic packet is not ECN-capable, in which case it
uses drop as the signal, otherwise it uses ECN.

The internal base signalling probability (p′) is kept
up to date by the core PI Algorithm (3) which only
needs occasional execution [25]. The proportional gain
factor β is multiplied by the change in queuing time.
The integral gain factor α is typically smaller, to re-
store any persistent standing queue to the target delay.
These expressions, which can be negative, are added to
the previous p every Tupdate (default 16 ms). Then the
L4S and Classic signalling probabilities, pL and pC are
derived from p.

Algorithm 3 PI core: Every Tupdate p is updated

1: curq = cq.time()
2: p′ = p′ + α ∗ (curq − TARGET) + β ∗ (curq − prevq)
3: pL = k ∗ p′
4: pC = (p′)2

5: prevq = curq

4. EVALUATION

4.1 Testbed Setup
We used a testbed to evaluate the proposed DualQ

AQM mechanism in a realistic setting, and to run re-
peatable experiments in a controlled environment. The
testbed was assembled using carrier grade equipment in
the same enviroment as for testing customer solutions.
Figure 3 depicts the testbed, which consists of a clas-
sical residential service delivery network composed of
Residential Gateway, xDSL DSLAM (DSL Access Mul-
tiplexer), BNG (Broadband Network Gateway), Service
Routers (SR) and application servers. The Residential
Gateway is connected by VDSL to a DSLAM, which is
connected to the BNG through an aggregation network,
representing a local ISP or access wholesaler. Traffic is
routed to another network representing a global ISP
that hosts the application servers and offers breakout
to the Internet. The client computers in the home net-
work and the application servers at the global ISP are
Linux machines, which can be configured to use any
TCP variant, start applications and test traffic. The

1Open source at https://github.com/olgabo/dualpi2

two client-server pairs (A and B) are respectively con-
figured with the same TCP variants and applications.

Figure 3: Testbed configuration

In a production access network, per-customer queues
form the leaves of a hierarchical scheduling tree and they
are deliberately arranged as the downstream bottleneck
for each customer. Traffic from the client-server pairs
is routed from the BNG through a Linux box (‘AQM
server’), which acts as the rate bottleneck where we
configure the different AQMs being evaluated for the
BNG. This server also emulates extra delay, controls
the experiments, captures the traffic and analyses it. In
practice it would also be important to deploy an AQM
in the home gateway, but in our experiments the ACK
traffic was below the upstream capacity.

The two client computers were connected to a modem
using 100 Mbps Fast Ethernet; the xDSL line was con-
figured at 48 Mbps downstream and 12 Mbps upstream;
the links between network elements consisted of at least
1GigE connections. The base RTT (T0) between the
clients and servers was 7 ms, which was primarily due to
the interleaved Forward Error Correction (FEC) config-
ured for xDSL. We configured the different bottlenecks
on the AQM server at the BNG on the downstream in-
terface where the AQM was configured. Extra delay
was configured on the upstream interface using a netem
qdisc, to compose the total base RTTs tested.

To support higher bottleneck rates and lower RTTs
all experiments were performed with the clients con-
nected directly to the BNG with 1GigE connections.
Those experiments fitting within xDSL limits were val-
idated on the full testbed and compared, showing near
identical results. All Linux computers were Ubuntu
14.04 LTS with kernel 3.18.9, which contained the im-
plementations of the TCP variants and AQMs.

We used DCTCP for the Scalable congestion control
and both Reno and Cubic for Classic, all with their
default configurations2. In this paper we do not show
Reno because the Cubic results were generally similar
but not always as good. For ECN-Cubic, we enable
TCP ECN negotiation. We compared DualPI2 with
PIE and FQ-CoDel, all configured as in Table 1.

4.2 Experimental Approach
For traffic load we used long-running flows

(§§ 4.3 & 4.4) and/or dynamic short flows (§ 4.5).

2Except DCTCP is patched to fix a bug that prevented
it falling back to Reno on detecting a drop.

https://github.com/olgabo/dualpi2

 0

 10

 20

 30

 40

 50

 60

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

Q
u

eu
e

d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 0.01

 0.1

 1

 10

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

W
in

d
o

w
 b

al
an

ce
 [

ra
ti

o
]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic/Cubic ratio DCTCP/Cubic ratio

RTT[ms]:

 60

 65

 70

 75

 80

 85

 90

 95

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

L
in

k
 u

ti
li

sa
ti

o
n

 [
%

]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic+Cubic DCTCP+Cubic

RTT[ms]:

 0.001

 0.01

 0.1

 1

 10

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

D
ro

p
/M

ar
k

 p
ro

b
ab

il
it

y
 [

%
]

lo
g

sc
al

e

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

Drops Cubic P25, mean, P99
Drops ECN-Cubic P25, mean, P99

Marks ECN-Cubic P25, mean, P99
Drops DCTCP P25, mean, P99

Marks DCTCP P25, mean, P99

RTT[ms]:

Figure 4: Equal RTT with 1 flow for each CC

All Buffer: 40000 pkt, ECN enabled
PIE Target delay: 15 ms, Burst: 100 ms, TUpdate:

16 ms, α: 1/16, β: 10/16, ECN drop: 25%
FQ-CoDel Target delay: 5 ms, Burst: 100 ms
DualPI2 Target delay: 15 ms, L4S T: 1 ms, D: 30 ms, α:

5/16, β: 50/16, k: 2, ECN drop: 100% L4S

Table 1: Default parameters for the different AQMs.

We used long flows, not as an example of a realistic
Internet traffic mix, rather to aid interpretation of
various effects, such as starvation.

From all our experiments, we selected a represen-
tative subset to evaluate our two main performance
goals: queuing delay and window balance. We also show
rate balance, link utilization and drop/mark probabil-
ity, as well as flow completion times in short flow ex-

periments. Heavy load scenarios predominate in our se-
lection, again not because they are typical, but because
they do occur and they are the worst case.

We mixed different number of flows, evaluated flows
with different congestion controls (CCs) and RTTs, and
to verify behaviour on overload (§ 4.6), we injected un-
responsive UDP load, both ECN and Not-ECN capable.

We configured PIE and FQ-CoDel with ECN as well
as without, as a control so as not to attribute any per-
formance gains to L4S ECN that are already available
from Classic ECN. In this paper we present those com-
binations of CC and AQM that each AQM is intended
to support: DCTCP with Cubic on DualPI2; and ECN-
Cubic with Cubic on PIE and FQ-CoDel.

4.3 Experiments with long-running flows
Each experiment (lasting 250 s) was performed with

a specified TCP variant configured on each client-server
pair A and B and a specified AQM, bottleneck link
speed and RTT on the AQM server. We performed
a large number of experiments with different combina-
tions of long-running flows, where each client started 0
to 10 file downloads on its matching server, resulting
in 120 flow combinations competing at a common bot-
tleneck for 250 seconds. These 120 experiments were
executed for the 25 combinations of 5 RTTs (5, 10, 20,
50 and 100 ms) and 5 link speeds (4, 12, 40, 120 and
200 Mbps).

For the 1-1 (one flow on pair A and one on B) combi-
nation Figure 4 shows queue delay, window ratio, link
utilization and mark/drop probability for each AQM
and congestion control. The results are plotted for dif-
ferent combinations of link speeds and RTTs on the
x-axis.

Looking at queuing delay we can clearly see that L4S
delay and delay variance are significantly lower than
the other AQMs. All AQMs roughly hold to their tar-
get(s), except with higher delays for lower rates and
some expected under-utilization for higher base RTTs.
The lower link rates drive the non-ECN AQMs up to
drop probabilities around 10%.

For the medium and high throughputs, L4S achieves
sub-millisecond average delays with 99th percentile
around 2–3 ms. The higher queuing delays for the
smaller throughputs are due to the single packet se-
rialization time of 3 ms (1 ms) on a 4 Mbps (12 Mbps)
link. This is why we set a floor of 2 packets for the
L4S marking threshold otherwise it would always mark
100%. The Cubic flows on the DualPI2 AQM achieve
a similar average queuing delay as with the PIE AQM.
Due to the time-shifted overload mechanism the 99th

percentile of the Cubic flows pushes up the average and
99th percentile of the L4S queue delay.

The drop/mark plot clearly demonstrates the differ-
ence between drop and mark for the DualPI2 AQM. The
squared drop probability results in near-equal windows
for the different CCs, as demonstrated in the window
balance plot. Due to the small queue delay of the L4S
traffic, the total amount of packets in flight is smaller
than with the other AQMs. To compensate, a higher
drop and mark probability is needed. For the 4 Mbps
and 5 ms base RTT, the probabilities sporadically start
to exceed the coupled 25% drop and 100% mark thresh-
olds, with some L4S drop as a result. For the higher
BDPs, the links are less utilized due to the large win-
dow reduction of Cubic, resulting in more on/off-type
marking for DCTCP. Even when DCTCP is not able to
fill this gap due to its additive increase, it still reduces
less than Cubic, with a higher DCTCP window as a
result. For the very high BDPs Cubic starts to switch
out of its Reno mode, resulting in the higher window of
pure Cubic mode.

Figure 5 shows the window ratio for different com-
binations of numbers of long-running flow. The figure
shows the results for a 40 Mbps link and 10 ms RTT,
which was representative of the other link rates and
RTTs. The number of flows for each pair (A and B) is
shown on the x-axis: the first value is the total number
of ECN-capable flows (ECN-Cubic or DCTCP), while
the second is the number of Cubic flows.

The results show that in general window sizes are
well-balanced with all combinations. This confirms that
the simple squared coupling of the DUALPI2 AQM
counterbalances the more aggressive response of DC-
TCP remarkably precisely over the whole range of com-
binations of flows.

Only when there are very few Classic flows compared
to L4S flows does the DCTCP window become smaller.
This is due to the low and bursty queue occupancy of
Classic flows,which causes DCTCP flows to frequently
hit the L4S threshold. This results in additional mark-
ing and a smaller window for DCTCP. A higher L4S-
threshold removes this effect. As the higher throughput
for one Classic flow is spread over multiple L4S flows,
the throughput of the L4S flows is not heavily impacted,
suggesting that if a compromise needs to be struck be-
tween low L4S latency and window balance, a low L4S
threshold will always be preferable.

Throughput variance experiments with more than 2
flows (not shown due to space limitations) illustrate
that, when a Classic flow competes with an L4S, it con-
veys its variations to the L4S flow (which fills up the
gaps). However, when solely DCTCP flows compete
their rates are much more stable.

4.4 Experiments with different RTTs
To evaluate the RTT-dependence of the windows and

rates of different CCs, we conducted additional experi-
ments with one flow per client server pair, each having
different base RTTs. These experiments were repeated
for the 5 link speeds.

Figure 6 shows queue delay and window and rate ra-
tio for flows with unequal RTTs, running concurrently.
We use one flow for each congestion control, labelled
as flow A for ECN congestion controls (ECN-Cubic or
DCTCP) and flow B for Cubic. Different combinations
of RTTs for each of the flows are shown on the x-axis.
For example, 5-20 means 5 ms base RTT for flow A and
20 ms for flow B.

Looking first at queuing delays in the DualPI2 AQM,
it can be seen that the extremely low latency for L4S
traffic is preserved in all cases, including in the pres-
ence of longer RTT traffic. Large-RTT Classic flows
combined with small-RTT L4S flows result in a longer
average Classic queue (see A-B = 5-100). This is again
due to the bursty character of ACK-clocked Classic
TCP flows, which need to wait until the L4S traffic
has backed off sufficiently to create scheduling oppor-
tunities for the Classic flows. This effect is tempered
by the time-shifted scheduler, which limits the waiting

 0.1

 1

 10

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

1
-1

2
-2

3
-3

4
-4

5
-5

6
-6

7
-7

8
-8

9
-9

1
0
-1

0

1
-9

2
-8

3
-7

4
-6

6
-4

7
-3

8
-2

9
-1

W
in

d
o
w

 b
a
la

n
c
e
 [

ra
ti

o
]

Nr of flows (A-B)

PIE (ECN-Cubic - Cubic) DUALPI2 (DCTCP - Cubic) FQCODEL (ECN-Cubic - Cubic)

ECN-Cubic(A)/Cubic(B) ratio DCTCP(A)/Cubic(B) ratio

Figure 5: Different number of flows on a 40 Mbps link with 10 ms RTT.

 0
 5

 10
 15
 20
 25
 30
 35
 40

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

Q
u

eu
e

d
el

ay
 [

m
s]

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic mean
P99

Cubic mean
P99

DCTCP mean
P99

RTT (flow A - flow B)[ms]:

 0.01

 0.1

 1

 10

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

W
in

d
o

w
 b

a
la

n
c
e
 [

ra
ti

o
]

ECN-Cubic(B)/Cubic(A) ratio DCTCP(B)/Cubic(A) ratio

RTT (flow A - flow B)[ms]:

 0.01

 0.1

 1

 10

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

A
5
-B

5
A

5
-B

1
0

A
5
-B

2
0

A
5
-B

5
0

A
5
-B

1
0
0

A
1
0
0
-B

5
A

1
0
0
-B

1
0

A
1
0
0
-B

2
0

A
1
0
0
-B

5
0

A
1
0
0
-B

1
0
0

R
a
te

 r
a
ti

o

Cubic(A)/ECN-Cubic(B) ratio Cubic(A)/DCTCP(B) ratio

RTT (flow A - flow B)[ms]:

Figure 6: Mixed RTT with 1 flow for each CC on a 40 Mbps link.

time for the burst to 30 ms at the expense of higher 99th

percentile delay for the L4S traffic.
In this same 5-100 case, window balance also suffers.

The bursty Classic traffic with its associated higher L4S
threshold marking drags down the L4S window size.

Comparing the bottom two plots, particularly in the
5-100 case, with PIE or DUALPI2 it can be seen that
window balance leads to considerable rate imbalance.
This is not surprising, because it is well known that
competing TCP flows equalize their congestion win-
dows so their bit rates will be inversely proportional
to their RTTs. However, as AQM reduce queueing de-
lay they intensify this effect, because the ratio between
total RTTs tends towards the ratio between base RTTs.

The implications of this trend are discussed in § 5.2.
For instance, in the 5-100 case when the ratio between

base RTTs is 20×, the ratio between flow rates is about
6×. This is because PIE holds queuing delay at about
15 ms, and (100 + 15)/(5 + 15) ≈ 6.

L4S all-but eliminates queuing delay so total RTT
is hardly any greater than base RTT. Therefore even
for the 5-50 case, rate imbalance is already approaching
10×. In the 5-100 case, it can be seen that the rate-
imbalance trend reverses. However, this is due to the
increased variance of the L4S queue in response to in-
creased Cubic burstiness as discussed above. In other
experiments (not shown) with the burstiness of Cubic
removed by using 2 DCTCP flows alone, rate imbal-

ance does indeed tend towards the inverse of the ratio
between the base RTTs of the flows.

Conversely, with FQ-CoDel the Flow Queuing sched-
uler enforces rate balance, which necessarily requires
considerable window imbalance.

 0.01

 0.1

 1

 10

1 3 9 27 81 243 729

C
o

m
p

le
ti

o
n

 t
im

e
[l

o
g

(s
ec

)]

Transfer size [KB]

minimal completion time

 0.01

 0.1

 1

1 3 9 27 81 243 729

C
o

m
p

le
ti

o
n

 e
ff

ic
ie

n
cy

[l
o

g
(s

ec
/s

ec
)]

Transfer size [KB]

DCTCP Cubic

Figure 7: Completion time against efficiency represen-
tation for 1 long flow and high dynamic load each on a
40 Mbps link with 10 ms base RTT.

4.5 Experiments with dynamic short flows
On top of the long flow experiments, we added em-

ulated web traffic load patterns between each client-
server pair, to evaluate the dynamic behaviour of the
AQMs with their congestion controllers. For this we
used an exponential arrival process with an average of
1 (low load) or 10 (high load) requested items per sec-
ond for the 4 Mbps link capacity, scaled for the higher
link speeds up to 50 (low) or 500 (high) requests for
the 200 Mbps links. Every request opened a new TCP
connection, closed by the server after sending data with
a size according to a Pareto distribution with α = 0.9
and a minimum size of 1 KB and maximum 1 MB. The
client logged the completion time and downloaded size.
Timing was started just before opening the TCP socket,
and stopped after the close by the server was detected.

The left-hand side of Figure 7 shows a log-log scat-
ter plot of the completion time to item size relation for
the high load DualPI2 AQM test case on a 40 Mbps
link with 10 ms base RTT. The green line is the the-
oretically achievable completion time, taking the RTT
into account but downloading at full link speed from
the start. As can be seen, the L4S short flows (within
the initial window size of 10 packets) closely achieve
this. They leave the TCP stack in a burst and face very
low delay in the network. This same representation also
helps in understanding where Classic download time is
typically lost. Around 1 second a lot of downloads had
to wait for the retransmission time-out after lost SYN
packets. Around 200 ms the minimum retransmission
time-out for tail loss is clearly visible. Long flows share
the throughput better, which is why they are further
from the theoretical completion time for a lone flow.

To better quantify the average and percentiles of the
completion times, we used the Completion Efficiency
representation on the right of Figure 7. To calculate its
completion efficiency for each item we divided actual
by theoretical completion time. We then binned the

samples in log scale bins (base 3) and calculated the
average, 1st and 99th percentiles. The green theoretical
completion time is now at 1 (maximum efficiency).

Figure 8 shows completion efficiency for a high load of
short flows plus a single long-running flow for each con-
gestion control on a 120 Mbps link with different RTTs.

With DualQ or FQ the completion times of short
flows are near-ideal. DualQ achieves this by keeping
the queue very shallow for all L4S flows. In contrast FQ
explicitly identifies and priority-schedules short flows.

In higher BDP cases, and in the high load case shown,
the completion times of larger downloads are longer
with DualPI2 than with the other AQMs. This is partly
due to the additional marking of bursty traffic due to the
shallow L4S threshold, which gives Cubic flows an ad-
vantage (as already discussed). However, the primary
cause is a known problem with DCTCP convergence
time. When a DCTCP flow is trying to push in against
a high load of other DCTCP flows, it drops out of slow
start very early, because of the higher prevailing mark-
ing level. Then it falls back to pushing in very slowly us-
ing only additive increase. Similarly, when another flow
departs, the additive increase of DCTCP takes many
round trips to fill the newly available capacity.

Others have noticed this problem and modified the
additive increase of DCTCP [44]. Nonetheless, DC-
TCP slow start also has to be modified—the aggression
of slow start in one flow has to increase to match the
increased aggression of congestion avoidance in others.
Solving this problem is included in the TCP Prague re-
quirements (see § 5.2), but it is outside the AQM-only
scope of the present paper.

Figure 9 adds further weight to the argument that
DCTCP, not the DualQ AQM, is the cause of the longer
completion times. Average queue delay, queue variance
and link utilization are all better with L4S/DualQ than
with FQ-CoDel. So it seems that DCTCP is just not
exploiting these advantages.

If we now compare the results in Figure 9 with those
for just long-running flows in Figure 4, we see the effect
of adding dynamic flows. They dramatically increase
queue delay variance (note the change in scale), par-
ticularly with FQCODEL and PIE. Nonetheless, L4S
queuing delay is still extremely low, with only a slight
increase in variance.

Comparing the link utilization plots, the added dy-
namic flows universally reduce utilization as arriving
flows take a while to use up the capacity that depart-
ing flows vacate, particularly at higher RTTs. With
DUALPI2, under-utilization is only a little worse than
with PIE, despite DCTCP’s convergence problem (dis-
cussed above). This is because the Classic Cubic traffic
takes up some of the slack.

4.6 Overload experiments
To validate the correct overload behaviour, we added

an unresponsive UDP flow to 5 long-running flows of
each congestion control type (ECN and non-ECN) over

 0.01

 0.1

 1

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

1 3 9 2
7

8
1

2
4

3
7

2
9

C
o

m
p

le
ti

o
n

 e
ff

ic
ie

n
cy

 [
lo

g
(s

ec
/s

ec
)]

RTT[ms]: 5 10 20 50 100 5 10 20 50 100 5 10 20 50 100

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic Cubic DCTCP

Bin start[KB]:

Figure 8: Heavy dynamic workload: 1 long flow and 300 short requests per second for each CC on a 120 Mbps link
with equal 10 ms base RTT. The bin boundaries are 1 KB, 3 KB, 9 KB, 27 KB, 81 KB, 243 KB, 729 KB and 1 MB.

 0

 20

 40

 60

 80

 100

 120

 140

 160

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

Q
u

eu
e

d
el

ay
 [

m
s]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic mean, P99 Cubic mean, P99 DCTCP mean, P99

RTT[ms]:

 60

 65

 70

 75

 80

 85

 90

 95

 100

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

5 1
0

2
0

5
0

1
0
0

L
in

k
 u

ti
li

sa
ti

o
n

 [
%

]

Link[Mbps]: 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200 4 | 12 | 40 | 120 | 200

PIE (ECN-Cubic+Cubic) DUALPI2 (DCTCP+Cubic) FQCODEL (ECN-Cubic+Cubic)

ECN-Cubic+Cubic DCTCP+Cubic

RTT[ms]:

Figure 9: Heavy dynamic workload: 1 long flow and 300 short requests per second for each CC.

a 100 Mbps bottleneck link with 10 ms base RTT. For
each AQM we ran 2 sets of tests with the UDP traffic
marked as either ECN/L4S or non-ECN. Each set tested
5 different UDP rates (50, 70, 100, 140 and 200 Mbps).

Figure 10 shows the results for the DualQ AQM. The
top plot shows the link output rate for each traffic type.
The more the UDP flow squeezes the responsive flows,
the more they drive up the congestion level (ECN or
drop). Only responsive flows heed ECN marks. So, in
the ECN UDP flow case, before congestion reaches the
level where the AQM starts dropping ECN packets, the
UDP flow is unaffected by congestion.

Once the AQM starts dropping ECN packets (and in
the non-ECN UDP flow case), the drop probability nec-
essary to make the responsive flows fit into the remain-
ing capacity also subtracts from the UDP flow, freeing
up some extra capacity for the responsive traffic.

The capacity left by the UDP flow for responsive traf-
fic is roughly the same whether the UDP flow uses L4S-
ECN or not, but the largest difference is where the ar-
rival rate of the UDP flow is around 100% of the ca-

pacity. Once unresponsive traffic significantly exceeds
100%, it leaves very little capacity for the responsive
traffic.

All this behaviour was exactly the same as with a sin-
gle queue AQM (i.e. PIE), which was our intention. We
wanted to ensure that introducing two queues would
not introduce any new pathologies. Then any appli-
cations relying on unresponsive behaviour should work
the same, and any optional mechanisms to police unre-
sponsive flows should also work the same.

In contrast, flow queuing starts dropping unrespon-
sive traffic when it exceeds an equal share of through-
put. For instance, a 50 Mbps flow experiences about
80% drop, to force it to share the capacity equally with
10 other flows.

The middle plot shows that the windows of the DC-
TCP and Cubic flows balance as long as the unre-
sponsive traffic is no greater than the link capacity.
For higher levels of unresponsive traffic, the through-
put of the responsive traffic is more dominated by long
retransmission time-outs, which results in more equal

50 70 100 140 200 50 70 100 140 200
0%

20%

40%

60%

80%

100%

UDP rate
[Mbps]:

UDP class:

DCTCP Cubic UDP

L4S Not ECN

R
at

e
sh

ar
e

50 70 100 140 200 50 70 100 140 200
0.1

1

10

UDP rate
[Mbps]:

UDP class: L4S Not ECN

Window
balance

[DCTCP/
Cubic]

50 70 100 140 200 50 70 100 140 200
0

10

20

30

40

50

UDP rate
[Mbps]:

UDP class:

DCTCP mean, P99 Cubic mean, P99

L4S Not ECN

Q
ue

ue
 d

el
ay

 [
m

s]

Figure 10: Overload experiments on a 100 Mbps link

rates, causing window imbalance because of the differ-
ent RTTs.

Finally the bottom plot shows the queuing delay for
the DualQ during the same experiments. The most no-
table feature is that, whether the unresponsive traffic is
L4S or Not ECN, average L4S queuing delay remains
below about 2 ms, except in the L4S UDP case, and
then only once it exceeds 140% of capacity.

In the case when the UDP traffic is not ECN, the PI2
AQM holds Classic queue delay to its target by applying
sufficient drop. The coupled AQM translates this to a
high level of L4S marking or, if congestion is high, it
applies the same level of drop to both queues. Given
L4S throughput is relatively low in this case, it is easy
for L4S queuing delay to remain very low.

In the case when the UDP traffic is L4S, the majority
of the load arrives at the L4S queue. The native L4S
threshold only applies marking, which the UDP traffic
ignores. So the overload mechanism described in § 3.4
starts to dominate. This takes over whenever the Clas-
sic queue is empty, which happens increasingly often as
more UDP L4S traffic arrives. At such times, the base
AQM (PI controller) uses the L4S queue delay to drive
its output, still aiming for the Classic 15 ms target. The
more unresponsive traffic that arrives at the L4S queue,
the more the L4S queue shifts from the 1 ms L4S thresh-
old to the 15 ms Classic target. This effect can be seen

between 100% and 200% in the L4S UDP case.

5. DEPLOYMENT CONSIDERATIONS

5.1 Standardization Requirements
The IETF has taken on L4S standardization work,

in principle. It has adopted a proposal [6] to make the
ECT(1) codepoint available for experimental classifica-
tion of L4S packets at the IP layer (v4 and v6), as de-
scribed in § 3. [18] considers the pros and cons of various
candidate identifiers and finds that none are without
problems, but proposes ECT(1) as the least worst.

The main issue is that there is only one spare code-
point, so a queue can distinguish L and C packets, but
congestion marking has to use the same Congestion Ex-
perienced (CE) codepoint for both L & C packets. This
is not a problem for hosts but, in the (unusual) case of
multiple simultaneous bottlenecks, any packet already
marked CE upstream will have to be classified into the
L queue, irrespective of whether it was originally C or
L. This is considered acceptable for TCP given that,
if a few packets arrive early out of order, subsequent
packets still advance the ACK counter.

Operators will be able to classify L4S on additional
identifiers (e.g. by ECN plus address range or VLAN
ID), which they might use for initial exclusivity, without
compromising long-term interoperability.

The IETF also plans to define the semantics of the
new identifier. The ‘Classic’ ECN standard [39] defines
a CE mark as equivalent to a drop, so queuing de-
lay with Classic ECN cannot be better than with drop
(this may be why operators have not deployed Classic
ECN [41, § 5]). The square relationship between an L4S
mark and a drop in this paper (Eqn. (2)) has been pro-
posed for experimental standardization [18]. Nonethe-
less, it has been proposed to recommend rather than
standardize a value for the coupling factor, k, given dif-
ferences would not prevent interoperability.

The IETF is also adopting a specification of the du-
alQ coupled AQM mechanism [17] so that multiple im-
plementations can be built, tested and compared, pos-
sibly using different base AQMs internally.

5.2 Congestion Control Roadmap
This paper uses DCTCP unmodified3 in all experi-

ments i) to focus the parameter space of our experi-
ments on the network mechanism, without which end-
system performance improvements would be moot; and
ii) to emphasize that the end-system side of the multi-
party deployment is already available (in the Linux
mainline and Windows), at least for testing purposes.
Nonetheless, numerous improvements to DCTCP can
be envisaged for this new public Internet scenario. They
are listed below in priority order starting with those
necessary for safety, and ending with performance im-
provements. They are adapted from the congestion

3See footnote 2.

control requirements identified in the IETF L4S archi-
tecture draft [12], which are in turn adapted from the
“TCP Prague requirements”, named after the meeting
in Prague of a large group of DCTCP developers that
informally agreed them [8]:

1. Fall back to Reno/Cubic on loss (Windows does,
but Linux does not due to a bug—fix submitted);

2. Negotiate altered feedback semantics [30, 11];
3. Use of a standardized packet identifier [18];
4. Handle a window of less than 2, rather than grow

the queue if base RTT is low [10];
5. Smooth ECN feedback over a flow’s own RTT, not

the RTT hard-coded for data-centres [2, § 5];
6. Fall back to Reno/Cubic if increased delay of clas-

sic ECN bottleneck detected;
7. Faster-than-additive increase, e.g. Adaptive Accel-

eration (A2DTCP) [44];
8. Less drastic exit from slow-start, similar goal to

Flow-Aware (FA-DCTCP) [27];
9. Reduce RTT-dependence of rate [2, § 5] (see be-

low).
With tail-drop queues, so-called ‘RTT-unfairness’

had never been a great cause for concern because the
RTTs of all long-running flows included a common
queuing delay component that was no less than worst-
case base RTT (due to the historical rule of thumb for
sizing access link buffers4 at 1 worst-case RTT). So,
even where the ratio between base delays was extreme,
the ratio between total RTTs rarely exceeded 2 (e.g. if
worst-case base RTT is 100 ms, worst-case total RTT
imbalance tends to (100 + 100)/(0 + 100).

However, Classic AQMs reduce queuing delay to a
typical, rather than worst-case, RTT. For instance,
with PIE, the queuing delay common to each flow is
15 ms. Therefore, worst-case rate imbalance will be
(100 + 15)/(0 + 15) ≈ 8 (see the explanation in § 4.4
of the rate imbalance in Figure 6).

Because of the cushioning effect of queuing delay,
even when base RTTs are extremely imbalanced rates
are not. But, because L4S all-but eliminates queuing
delay, it exposes the full effect of the ‘RTT-unfairness’
issue.

We do not believe the network needs to be involved
in addressing this problem. RTT-dependence is a fea-
ture of end-to-end congestion controls, so that is where
it should be addressed. Classic CCs will not need to
change, because classic queues will still need to be large
to avoid under-utilization. However, L4S congestion
controls will need to be less RTT-dependent, to avoid
starving any L4S and Classic flows with larger RTTs
(hence reduced RTT-dependence has been added to the
TCP-Prague requirements above).

As a fortunate side-effect, it will be easier to define
the coupling factor k (see § 3.2) to balance throughput
between RTT-independent L4S traffic and large-queued

4Note that access buffers cannot exploit such high flow
aggregation as in the core [20]

Classic traffic.

5.3 Deployment Scenarios
The applicability of the DualQ is of course not lim-

ited to fixed public access networks. The DualQ Cou-
pled AQM should also enable DCTCP to be deployed
across multi-tenant data centres or across community
of interest networks connecting private data centres—
anywhere where the lack of a centralized system-admin
makes coordinated deployment of DCTCP impractical.
The most likely DC bottlenecks could be prioritized for
deployment, e.g. at the ingress and egress of hypervisors
or top-of-rack switches depending on topology, and at
WAN access points.

In mobile networks the bottleneck is usually the radio
access where buffering is more complex, but in principle
an AQM similar to the Coupled DualQ ought to work.

6. RELATED WORK
In 2002, Gibbens and Kelly [21] developed a scheme

to mark ECN in a priority queue based on the combined
length of both queues. However, they were not trying
to serve different congestion controllers as in the present
work. In 2005 Kuzmanovic [32, §5] presaged the main
elements of DCTCP showing that ECN should enable a
näıve unsmoothed threshold marking scheme to outper-
form sophisticated AQMs like the proportional integral
(PI) controller. It assumed smoothing at the sender, as
earlier proposed by Floyd [19].

Wu et al. [42] investigates a way to incrementally de-
ploy DCTCP within data centres, marking ECN when
the temporal queue exceeds a shallow threshold but us-
ing standard ECN [39] on end-systems. Kuhlewind et
al. [31] showed that DCTCP and Reno could co-exist in
the same queue configured with a form of WRED [14]
classifying on ECN not Diffserv. Judd [28] uses Diffserv
scheduling to partition data centre switches between
DCTCP and classic traffic in a financial data centre
scenario, but as already explained this relies on man-
agement configuration based on prediction of the traffic
matrix and its dynamics, which becomes hard on low
stat-mux links. Fair Low Latency (FaLL) [43] is an
AQM for DC switches building on CoDel [37]. Unlike
the DualQ, FaLL inspects the transport layer of sample
packets to focus more marking onto faster flows while
keeping the queue short.

7. CONCLUSION
Classic TCP induces two impairments: queuing de-

lay and loss. A good AQM can reduce queuing delay
but then TCP induces higher loss. In a low stat-mux
link, there is a limit to how much an AQM can reduce
queuing delay without TCP’s sawteeth introducing a
third impairment: under-utilization. Thus TCP is like
a balloon: when the network squeezes one impairment,
another bulges out.

This paper moves on from debating where the net-

work should best squeeze the TCP balloon. It recog-
nizes that the problem is now wholly outside the net-
work: Classic TCP (the balloon itself) is the problem.
But this does not mean the solution is also wholly out-
side the network. This paper has shown that the net-
work plays a crucial role in enabling hosts to transition
away from the Classic TCP balloon. The ‘DualQ Cou-
pled AQM’ detailed in this paper is not notable as some-
how a ‘better’ AQM than others. Rather, it is notable
as a coupling between two AQMs in two queues—as a
transition mechanism to enable hosts to kick out their
old TCP balloon.

Hosts will then be able to transition to a member of
the family of scalable congestion controls. This can still
be likened to a balloon. But it is a tiny balloon (near-
zero impairments) and, importantly, it will stay the
same tiny size (invariant impairments as BDP scales).
Whereas the Classic TCP balloon is continuing to grow
(worsening impairments) as BDP scales. This is why
we call the new Internet service ‘Low Latency Low Loss
Scalable throughput’ (L4S).

The paper provides not just the mechanism but also
the incentive for transition—the tiny size of all the im-
pairments. For link rates from 4–200 Mb/s and RTTs
from 5–100 ms, our extensive testbed experiments with
a wide range of heavy load scenarios have shown near-
zero congestion loss; sub-millisecond average queuing
delay (roughly 500µs) with tight variance; and near-
full utilization.

We have been careful as far as possible to do no harm
to those still using the Classic service. Also, given the
network splits traffic into two queues, when it merges
them back together, we have taken great care that it
does not enforce flow ‘fairness’. Nonetheless, if hosts
are aiming for flow ‘fairness’ they will get it, while re-
maining oblivious to the difference between Scalable
and Classic congestion controls.

We have been careful to handle overload in the same
principled way as normal operation, preserving the
same ultra-low delay for L4S packets, and dropping ex-
cess load as if the two queues were one.

And finally, we have been careful to heed the zero-
config requirement of recent AQM research, not only en-
suring the AQMs inherently auto-tune to link rate, but
also shifting RTT-dependent smoothing to end-systems,
which know their own RTT.

8. REFERENCES
[1] Alizadeh, M., Greenberg, A., Maltz,

D. A., Padhye, J., Patel, P., Prabhakar,
B., Sengupta, S., and Sridharan, M. Data
Center TCP (DCTCP). Proc. ACM
SIGCOMM’10, Computer Communication Review
40, 4 (Oct. 2010), 63–74.

[2] Alizadeh, M., Javanmard, A., and
Prabhakar, B. Analysis of DCTCP: Stability,
Convergence, and Fairness. Proc. ACM
SIGMETRICS’11 (2011).

[3] Bai, W., Chen, K., Chen, L., Kim, C., and
Wu, H. Enabling ECN over Generic Packet
Scheduling. In Proc. Int’l Conf Emerging
Networking EXperiments and Technologies (New
York, NY, USA, 2016), CoNEXT ’16, ACM,
pp. 191–204.

[4] Bansal, D., and Balakrishnan, H. Binomial
Congestion Control Algorithms. In Proc. IEEE
Conference on Computer Communications
(Infocom’01) (Apr. 2001), IEEE, pp. 631–640.

[5] Belshe, M., Peon, R., and Thomson (Ed.),
M. Hypertext Transfer Protocol version 2
(HTTP/2). Request for Comments 7540, RFC
Editor, May 2015.

[6] Black, D. Explicit Congestion Notification
(ECN) Experimentation. Internet Draft
draft-ietf-tsvwg-ecn-experimentation-00, Internet
Engineering Task Force, Dec. 2016. (Work in
Progress).

[7] Bondarenko, O., De Schepper, K., Tsang,
I.-J., Briscoe, B., Petlund, A., and
Griwodz, C. Ultra-Low Delay for All: Live
Experience, Live Analysis. In Proc. ACM
Multimedia Systems; Demo Session (New York,
NY, USA, May 2016), ACM, pp. 33:1–33:4.

[8] Briscoe, B. [tcpPrague] Notes: DCTCP
evolution ’bar BoF’: Tue 21 Jul 2015, 17:40,
Prague. Archived mailing list posting URL:
https://mailarchive.ietf.org/arch/msg/tcpprague/
mwWncQg3egPd15FItYWiEvRDrvA, July 2015.

[9] Briscoe, B., Brunstrom, A., Petlund, A.,
Hayes, D., Ros, D., Tsang, I.-J., Gjessing,
S., Fairhurst, G., Griwodz, C., and Welzl,
M. Reducing Internet Latency: A Survey of
Techniques and their Merits. IEEE
Communications Surveys & Tutorials 18, 3 (Q3
2016), 2149–2196.

[10] Briscoe, B., and de Schepper, K. Scaling
TCP’s Congestion Window for Small Round Trip
Times. Technical report TR-TUB8-2015-002, BT,
May 2015. http://riteproject.eu/publications/.

[11] Briscoe, B., Kühlewind, M., and
Scheffenegger, R. More Accurate ECN
Feedback in TCP. Internet Draft
draft-ietf-tcpm-accurate-ecn-02, Internet
Engineering Task Force, Oct. 2016. (Work in
Progress).

[12] Briscoe (Ed.), B., De Schepper, K., and
Bagnulo, M. Low Latency, Low Loss, Scalable
Throughput (L4S) Internet Service: Architecture.
Internet Draft draft-briscoe-tsvwg-l4s-arch-00,
Internet Engineering Task Force, Oct. 2016.
(Work in Progress).

[13] Chen, W., Cheng, P., Ren, F., Shu, R., and
Lin, C. Ease the Queue Oscillation: Analysis and
Enhancement of DCTCP. In Distributed
Computing Systems (ICDCS), 2013 IEEE 33rd

https://mailarchive.ietf.org/arch/msg/tcpprague/mwWncQg3egPd15FItYWiEvRDrvA
https://mailarchive.ietf.org/arch/msg/tcpprague/mwWncQg3egPd15FItYWiEvRDrvA

International Conference on (July 2013),
pp. 450–459.

[14] Clark, D. D., and Fang, W. Explicit
allocation of best-effort packet delivery service.
IEEE/ACM Transactions on Networking 6, 4
(Aug. 1998), 362–373.

[15] Davie, B., et al. An Expedited Forwarding
PHB (Per-Hop Behavior). Request for Comments
3246, Internet Engineering Task Force, Mar. 2002.

[16] De Schepper, K., Bondarenko, O., Tsang,
I.-J., and Briscoe, B. PI2 : A Linearized AQM
for both Classic and Scalable TCP. In Proc. ACM
CoNEXT 2016 (New York, NY, USA, Dec. 2016),
ACM.

[17] De Schepper, K., Briscoe (Ed.), B.,
Bondarenko, O., and Tsang, I.-J. DualQ
Coupled AQM for Low Latency, Low Loss and
Scalable Throughput. Internet Draft
draft-briscoe-tsvwg-aqm-dualq-coupled-00,
Internet Engineering Task Force, Oct. 2016.
(Work in Progress).

[18] De Schepper, K., Briscoe (Ed.), B., and
Tsang, I.-J. Identifying Modified Explicit
Congestion Notification (ECN) Semantics for
Ultra-Low Queuing Delay. Internet Draft
draft-briscoe-tsvwg-ecn-l4s-id-02, Internet
Engineering Task Force, Oct. 2016. (Work in
Progress).

[19] Floyd, S. TCP and Explicit Congestion
Notification. ACM SIGCOMM Computer
Communication Review 24, 5 (Oct. 1994), 10–23.
(This issue of CCR incorrectly has ’1995’ on the
cover).

[20] Ganjali, Y., and McKeown, N. Update on
Buffer Sizing in Internet Routers. ACM
SIGCOMM Computer Communication Review 36
(Oct. 2006).

[21] Gibbens, R. J., and Kelly, F. P. On Packet
Marking at Priority Queues. IEEE Transactions
on Automatic Control 47, 6 (June 2002),
1016–1020.

[22] Ha, S., Rhee, I., and Xu, L. CUBIC: a new
TCP-friendly high-speed TCP variant. SIGOPS
Operating Systems Review 42, 5 (July 2008),
64–74.

[23] Hoeiland-Joergensen, T., McKenney, P.,
Täht, D., Gettys, J., and Dumazet, E. The
FlowQueue-CoDel Packet Scheduler and Active
Queue Management Algorithm. Internet Draft
draft-ietf-aqm-fq-codel-06, Internet Engineering
Task Force, Mar. 2016. (work in progress).

[24] Hohlfeld, O., Pujol, E., Ciucu, F.,
Feldmann, A., and Barford, P. A QoE
Perspective on Sizing Network Buffers. In Proc.
Internet Measurement Conf (IMC’14) (Nov.
2014), ACM, pp. 333–346.

[25] Hollot, C. V., Misra, V., Towsley, D., and
Gong, W. Analysis and design of controllers for
AQM routers supporting TCP flows. IEEE
Transactions on Automatic Control 47, 6 (Jun
2002), 945–959.

[26] Irteza, S., Ahmed, A., Farrukh, S., Memon,
B., and Qazi, I. On the Coexistence of
Transport Protocols in Data Centers. In Proc.
IEEE Int’l Conf. on Communications (ICC 2014)
(June 2014), pp. 3203–3208.

[27] Joy, S., and Nayak, A. Improving Flow
Completion Time for Short Flows in Datacenter
Networks. In Int’l Symposium on Integrated
Network Management (IM 2015) (May 2015),
IFIP/IEEE, pp. 700–705.

[28] Judd, G. Attaining the Promise and Avoiding
the Pitfalls of TCP in the Datacenter. In 12th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15) (Oakland,
CA, May 2015), USENIX Association,
pp. 145–157.

[29] Kelly, T. Scalable tcp: Improving performance
in highspeed wide area networks. ACM
SIGCOMM Computer Communication Review 32,
2 (Apr. 2003).

[30] Kühlewind, M., Scheffenegger, R., and
Briscoe, B. Problem Statement and
Requirements for Increased Accuracy in Explicit
Congestion Notification (ECN) Feedback. Request
for Comments 7560, RFC Editor, Aug. 2015.

[31] Kühlewind, M., Wagner, D. P., Espinosa,
J. M. R., and Briscoe, B. Using Data Center
TCP (DCTCP) in the Internet. In Proc. Third
IEEE Globecom Workshop on
Telecommunications Standards: From Research to
Standards (Dec. 2014), pp. 583–588.

[32] Kuzmanovic, A. The Power of Explicit
Congestion Notification. Proc. ACM
SIGCOMM’05, Computer Communication Review
35, 4 (2005).

[33] Kwon, M., and Fahmy, S. A Comparison of
Load-based and Queue-based Active Queue
Management Algorithms. In Proc. Int’l Soc. for
Optical Engineering (SPIE) (2002), vol. 4866,
pp. 35–46.

[34] Mathis, M. Relentless Congestion Control. In
Proc. Int’l Wkshp on Protocols for Future,
Large-scale & Diverse Network Transports
(PFLDNeT’09) (May 2009).

[35] Mathis, M., Semke, J., Mahdavi, J., and
Ott, T. The macroscopic behavior of the TCP
Congestion Avoidance algorithm. Computer
Communication Review 27, 3 (July 1997).

[36] Menth, M., Schmid, M., Heiss, H., and
Reim, T. MEDF - a simple scheduling algorithm
for two real-time transport service classes with
application in the UTRAN. In Proc. IEEE

Conference on Computer Communications
(INFOCOM’03) (Mar. 2003), vol. 2,
pp. 1116–1122.

[37] Nichols, K., and Jacobson, V. Controlling
Queue Delay. ACM Queue 10, 5 (May 2012).

[38] Pan, R., Piglione, P. N. C., Prabhu, M.,
Subramanian, V., Baker, F., and
Ver Steeg, B. PIE: A Lightweight Control
Scheme To Address the Bufferbloat Problem. In
High Performance Switching and Routing
(HPSR’13) (2013), IEEE.

[39] Ramakrishnan, K. K., Floyd, S., and
Black, D. The Addition of Explicit Congestion
Notification (ECN) to IP. Request for Comments
3168, RFC Editor, Sept. 2001.

[40] Salim, J. H., and Ahmed, U. Performance
Evaluation of Explicit Congestion Notification
(ECN) in IP Networks. Request for Comments
2884, RFC Editor, July 2000.

[41] Welzl, M., and Fairhurst, G. The Benefits of
using Explicit Congestion Notification (ECN).
Internet Draft draft-ietf-aqm-ecn-benefits-08,
Internet Engineering Task Force, Nov. 2015.
(Work in Progress).

[42] Wu, H., Ju, J., Lu, G., Guo, C., Xiong, Y.,
and Zhang, Y. Tuning ECN for Data Center
Networks. In Proceedings of the 8th International
Conference on Emerging Networking Experiments
and Technologies (New York, NY, USA, 2012),
CoNEXT ’12, ACM, pp. 25–36.

[43] Xue, L., Chiu, C.-H., Kumar, S.,
Kondikoppa, P., and Park, S.-J. FaLL: A fair
and low latency queuing scheme for data center
networks. In Intl. Conf. on Computing,
Networking and Communications (ICNC 2015)
(Feb. 2015), pp. 771–777.

[44] Zhang, T., Wang, J., Huang, J., Huang, Y.,
Chen, J., and Pan, Y. Adaptive-Acceleration
Data Center TCP. IEEE Transactions on
Computers 64, 6 (June 2015), 1522–1533.

	Introduction
	Rationale
	Why a Scalable Congestion Control?
	Why ECN?
	Why Not Per-Flow Queues?

	Solution design
	Solution Structure
	Coupled AQM for Window Balance
	Dual Queue for Low Latency
	Overload Handling
	Linux qdisc Implementation

	Evaluation
	Testbed Setup
	Experimental Approach
	Experiments with long-running flows
	Experiments with different RTTs
	Experiments with dynamic short flows
	Overload experiments

	Deployment Considerations
	Standardization Requirements
	Congestion Control Roadmap
	Deployment Scenarios

	Related Work
	Conclusion
	References

