
Paced Chirping: Rethinking TCP start-up

Joakim S. Misund
University of Oslo,

Department of Informatics

Bob Briscoe
Independent

Abstract

Paced Chirping is a replacement of slow start that contin-
uously pulses the network with groups of packets called
’chirps’. The decreasing inter-packet gap of the chirps allows
the sender to estimate the available capacity from queueing
delay measurements. Each chirp creates a small measurable
queue, and the queue is allowed to drain in-between subse-
quent chirps. Using the capacity estimates Paced Chirping
transition to congestion avoidance without overshooting ca-
pacity.

Paced Chirping is implemented in Linux using the kernels
pacing framework to realise chirps. We have added code to
the pacing framework that allows a congestion control mod-
ule to create chirps with desired characteristics. This does
allow for more elaborate start-up schemes, made necessary
by increasing capacity and the need for lower latency. Pacing
precision is a challenge at high speed due to timing precision.
With the proposed NIC API change essayed by Van Jacobson
at netdev 0x12 precision can be improved significantly.

Paced Chirping achieves fast acceleration with extremely
low maximum queueing delay (couple of milliseconds), and
it is a promising step towards a start-up algorithm that can
reach utilization fast without hurting latency-sensitive appli-
cations. In the acceleration world, Cubic (without hystart) is
best and DCTCP is worst. In the delay overshoot world Cu-
bic is worst and DCTCP is best. Paced Chirping is as good
as the best in both worlds. The best acceleration of today’s
schemes gives the worst overshoot and the best overshoot
gives the worst acceleration. With paced chirping, the ac-
celeration and the overshoot are as good as the best of both
worlds.

1 Introduction

TCP slow start fumbles in the dark attempting to reach
the available capacity of a network path. It is a heuristic the
roughly doubles the amount of data it puts into the network
each round-trip time until it exceeds the available capacity

and overshoots the bottleneck queue causing high latency
and multiple congestion events. This affects not only the
flow itself but all the flows sharing the bottleneck.

TCP Slow start has to choose between acceleration speed
and queueing delay. If it accelerated faster than exponential
it causes a greater overshoot, but if it is slower it takes longer
to reach full utilization. It seems impossible to solve this
dilemma with TCP slow start, thus a new algorithm has to
be made. We believe that Paced Chirping is a promising step
towards a start-up algorithm that does not have to make a
tradeoff between acceleration speed and queue impact.

When TCP detects the first congestion event it transitions
to congestion avoidance. In congestion avoidance it is as-
sumed that the current amount of packets is close to the
available capacity of the network. However, if this is not the
case it will usually take a long time to reach full utilization.
TCPs start-up performance is thus fragile to early conges-
tion events caused by transient congestion periods, e.g bursty
cross traffic. Once a flow has entered congestion avoidance
there is no way back. This means that a premature transition
from TCP slow start can result in long convergence times
with under-utilization. A new TCP flow can thus be unlucky
during the start-up phase.

Although Paced Chirping is currently only implemented
and tested for DCTCP it can replace slow start for all conges-
tion controls. We have not yet made an attempt to structure
the code so that it can be used by other congestion control
modules. Each congestion control module needs its own im-
plementation. It is challenging to make the implementation
generic so that it can be an opt-in toggle.

L4S is an architecture that aims to keep queueing delay
extremely low. Simply put it makes two changes; one to the
network and one to the end system. In the network, queues
are kept small by marking packets early with explicit con-
gestion notification (ECN). The end-system (sender) reacts
to the extent of marks rather than the presence of marks. The
combination of the changes creates a network with extremely
low queueing delay and high throughput.

1

0 2 4 6 8 10
Time (ms)

0

10

20

30

40

50

60

In
te

r-
pa

ck
et

 r
at

e
(M

bp
s)

16-packet chirp

Figure 1: Packets in a chirp are sent with decreasing inter-
packet interval (increasing inter-packet rate).

A consequence of having a low marking threshold is that
the risk of exceeding the marking threshold prematurely in-
creases. TCP Slow start usually exhibit bursty behaviour
causing it to exceed the marking threshold early. This can
result in under-utilization and long convergence time.

During congestion avoidance TCP gently probes for more
capacity. Regular TCP uses additive increase. TCP CU-
BIC [2] uses a cubic function to make the probing faster in
high BDP scenarios, but can be even slower to converge oth-
erwise. The problem traditional TCP faces is uncertainty.
It does not know if more capacity has become available or
if it is in-between congestion events. This is because con-
gestion notifications (loss, or ECN) are infrequent. In L4S
congestion notifications are frequent and a flow can thus in-
fer that more capacity has become available from lack of
congestion notifications. This opens the possibility to use
Paced Chirping in congestion avoidance when frequent and
periodic ECN marks are absent. This can only be done for
scalable congestion controls like DCTCP and TCP Prague
because they react proportional to marks which keeps the
marks coming frequently.

2 Paced Chirping

Paced Chirping attempts to identify the available capacity of
a network path by gently probing the network continuously
with groups of packets called chirps. In this section we will
go through and explain the algorithm and its building blocks.
Paced Chirping is also described in [5].

A chirp is a group of packets sent at an increasing rate.
The increase in rate is relized by decreasing the inter-send
gaps between the packets. Figure 1 shows the inter-packet
rates of a chirp and how they relate to the inter-packet time
gaps. Paced Chirping is insensitive to the accuracy in the
inter-packet gaps as long as they are decreasing.

time [RTT]
1

round

2

3

4

1

5

1/20

5

8 8

16 16

16
gain = 2

gain = 2.516 16 16 16gu
ar

d
in

te
rv

al

0 2 4 6 8 10 12
0

10

20

30

40

50

60

Figure 2: The arrangement of chirps in each round as a flow
starts up).

The difference in queueing delay experienced by each
packet in a chirp is analyzed to get an estimate of the
available capacity. The analysis is the same as that of
pathchirp [6]. It looks for increasing trends in queueing
delay, called excursions, to estimate the available capacity.
Paced Chirping maintains an exponential moving average of
all the individual estimates. This moving average is used to
calculate the average gap of later chirps.

Paced chirping uses multiple chirps spread over a round-
trip-time with enough room in-between to allow the queue
to relax. This is shown in Figure 2. The time between sub-
sequent chirps is called a guard interval. Its value depends
on the number of chirps in the current round, the round-trip-
time and the current available capacity estimate. Critically,
the guard interval allows the bottleneck queue to relax in-
between chirps. This prevents persistent build-up of packets
at the bottleneck queue. We have experimented with adapt-
ing the guard interval based on an EWMA of the variability
of previous estimates. This way if the estimates are close to
one another Paced Chirping can accelerate fast to the avail-
able capacity, and when the estimates are noisy it can be
more cautious.

A key aspects of Paced Chirping is that it can probe for
available capacity without committing to sending at the ca-
pacity it probes for. This allows it to increase the confi-
dence in the estimate before it commits and hence reduce the
chances of overshooting. It is made possible by the guard
interval in-between chirps, which controls the average rate
over a sequence of chirps. The guard interval can be adjusted
according to the confidence in the current estimate.

The number of chirps in a round is controlled by a variable
M and a gain called g. The initial value of M is 2 (2 chirps).
After the third round M is set to M ∗g each round. We have
mostly used g = 2, but have experimented with smaller and
bigger values. This value of g gives us an increase similar to
exponential increase.

Paced Chirping terminates once it ’fills the pipe’; when the
number of in-flight packets is sufficiently close to the esti-
mated bandwidth delay-product. We currently have a legacy
transition period from when we had a linked list and no di-
rect interaction between the kernel and the congestion con-
trol module, but we believe that we can remove it with the
latest code. Paced Chirping is also terminated on packet loss.

2

2.1 Fast acceleration and low latency

To see the benefit of using Paced Chirping instead of slow
start we ran flow completion time experiments comparing
Paced Chirping to DCTCP (slow start without hystart) and
Cubic. Each experiment has 1000 flows with Pareto dis-
tributed flow sizes mimicking recent real-world measure-
ments since the introduction of HTTP/2 [4]. Alpha and mean
are set to 0.5 and 900 Bytes respectively, and the sizes are
kept in the range [1KB, 5MB]. The inter-arrival times of the
flows are exponentially distributed with various mean values
configured, called intensity. The network is configured with
a 15 ms RTT and a 100 Mb/s capacity. DCTCP and paced
chirping are run with a 1 ms marking threshold, while Cubic
is run with a tail-drop queue of 1 BDP. We vary the intensity
to test performance under various loads. The experiment is
run with and without a greedy background flow.

Figure 3 shows the flow completion time and empirical
CDF of the queueing delay under the different conditions.
Cubic achieves good FCT, but at the expense of a significant
queue. DCTCP does not handle the low marking threshold
well and exits slow start early which reduces the FCT for
longer flows. On the other hand the queuing delay is excel-
lent. Flows that use paced chirping finish as fast as Cubic
but with queueing delay nearly as low as DCTCP; far lower
than Cubic. Paced chirping does not make the trade-offs that
Cubic and DCTCP have to make.

3 When to Trigger Paced Chirping

It is obvious that Paced Chirping should be triggered at start-
up and re-start after RTO or idle. Scalable congestion con-
trols opens the possibility of triggering Paced Chirping dur-
ing congestion avoidance.

Traditional TCP variants needs to have a very low conges-
tion event rate to keep utilization high because of its conser-
vative reaction to congestion events. A consequence of this is
that congestion events have to happen very infrequent. When
congestion events are infrequent it is difficult to know if one
is in-between congestion events or if more capacity has be-
come available. TCP CUBIC uses time as an indication for
how aggressive it can be. As the time since the last con-
gestion event increases it becomes increasingly aggressive.
This improves the time it takes to acquire available capac-
ity in many scenarios by increasing the congestion window
according to a cubic function.

Figure 4 shows how TCP CUBIC acquires capacity as the
available capacity increase from 50Mbps to 100Mbps, and
50Mbps to 800Mbps over a 100ms round-trip time path. It
takes roughly 15 seconds, or 150 round-trip-times, when the
capacity goes from 50Mbps to 100Mbps. The number of
round-trip-times needed to go from 50Mbps to 800Mbps is
roughly the double, 300 round-trip-times. The takeaway is
that as capacity increases so does the time it takes TCP CU-

w_background: 0 w_background: 1
intensity_c: 1

intensity_c: 2
intensity_c: 10

10 1000 10 1000

0

50

100

150

0

50

100

150

0

50

100

150

File size (KB, log10 scaled)

Fl
ow

 C
om

pl
et

io
n

Ti
m

e
(R

TT
s)

chirping cubic dctcp

w_background: 0 w_background: 1

intensity_c: 1
intensity_c: 2

intensity_c: 10

0 20 40 0 20 40

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

Queue size (ms)

Em
pe

ric
al

 C
D

F

chirping cubic dctcp

Figure 3: Flow Completion Time and queueing delay for Cu-
bic, DCTCP and Paced Chirping. DCTCP and Cubic makes
opposite trade-offs between latency and FCT, while Paced
Chirping achieves both low latency and good FCT. ECN-
marking threshold 1 ms or 1 BDP tail-drop; RTT 50 ms;
capacity 100 Mb/s.

BIC to reach it.
Data Center TCP (DCTCP) [1], and other scalable con-

gestion controls, can make more informed decisions about
whether they are in-between congestion events or more ca-
pacity has become available compared to traditional TCP
variants because congestion events are more frequent 1.

We have implemented Paced Chirping in ns-3 and done
some very early experiments on turning Paced Chirping on
in congestion avoidance when more capacity becomes avail-
able. The results are promising. It accelerates fast with little

1On average 2 marks per round-trip-time

3

55 60 65 70 75 80 85 90

Time (seconds)

0

100

200

300

400

500

600

700

800

T
hr

ou
gh

pu
t

(M
bp

s)

TCP CUBIC

TCP CUBIC

Figure 4: Comparison of TCP CUBIC performance when
capacity goes from 50Mbps to 100Mbps and 800Mbps.
Round-trip-time 100ms

if any overshoot of the bottleneck queue.
Figure 5 shows the throughput evolution of different TCP

variants as capacity of the network is doubles during conges-
tion avoidance. The flows are run separately in different ex-
periments. The round-trip-time is 100ms, the capacity goes
from 50Mbps to 100Mbps. The queue length is half a BDP
at 50Mbps for Bic and Cubic, and 1ms at 50Mbps for both
DCTCP variants. The modified DCTCP variant uses Paced
Chirping when it detects lack of expected ECN marks, and
the unmodified DCTCP variant uses additive increase.

4 Implementation

Paced Chirping is implemented as two parts. The first is
modifications to the pacing framework in the Linux kernel
that allows any congestion control module to realise chirps.
The second part is logic added to the DCTCP congestion
control module that implements Paced Chirping.

Status

The latest version of paced chirping logic and modifica-
tions to the pacing framework are implemented on the net-
next branch (v5.0-rc8). A roadmap of the implementa-
tion(s) and how it can be installed can be found at github.
com/joakimmisund/PacedChirping. The code is open
sourced under GPLv2.

The code is still research and we are focusing on develop-
ing the algorithms rather than making the current production
ready (which it is not). We have not observed any kernel
freezes with the current version. We encourage you to ex-
periment with it (at your own risk) and give us feedback.

50 55 60 65 70 75 80 85 90
Time (seconds)

0

20

40

60

80

100

120

140

160

RT
T

(m
s)

TcpCubic/rtt.csv
TcpBic/rtt.csv
TcpDctcpPlain/rtt.csv
TcpDctcp/rtt.csv

50 60 70 80 90 100 110 120

Time (seconds)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(M
bp

s)

TCP CUBIC

TCP BIC

TCP DCTCP (Unmodified)

TCP DCTCP (Modified)

Figure 5: Comparison of ca performance when capacity dou-
bles (from 50 to 100 Mbps) over a 100ms round-trip-time
path

4.1 Kernel code changes
In this subsection we will discuss the changes we have made
in the kernel to enable congestion control modules to send
chirps. The code should work with both internal pacing and
external pacing (FQ, NIC), but has only been tested with in-
ternal pacing.

We will start this subsection with the different parts of the
kernel we have modified. First, we will discuss the data
types, variables and the callback we have added. Second,
discuss the added logic.

Data types, variables, Callback

Listings 1 shows the changes made to the tcp header-file un-
der include/linux. We have introduces a new struct called
chirp which describes how a chirp should look like. It has
the number of packet and the number of packets sent. It has
a gap that is the time inserted between subsequent packets. It
has a gap step which is a value that is to be subtracted from
gap each time gap is used. There are two TCP sequence
numbers that denote the first sequence number of the first
packet in the chirp and the first sequence number after the
last packet in the chirp. The pointer is an optional pointer to
memory where the actual inter-send times can be put. This is

4

github.com/joakimmisund/PacedChirping
github.com/joakimmisund/PacedChirping

Listing 1: New struct in tcp sock

s t r u c t c h i r p {
u16 p a c k e t s ;
u16 p a c k e t s o u t ;
u32 g a p n s ;
u32 g a p s t e p n s ;
u32 g u a r d i n t e r v a l n s ;
u32 b e g i n s e q ;
u32 e n d s e q ;
u64 ∗ s c h e d u l e d g a p s ;
} ;

s t r u c t t c p s o c k {

. . .

u32 i s c h i r p i n g ;
s t r u c t c h i r p c h i r p ;
u32 d i s a b l e c w r u p o n e c e ;
u32 d i s a b l e k e r n e l p a c i n g c a l c u l a t i o n ;

. . .

} ;

useful if the kernel is unable to realise the inter-packet gaps
accurately.

In tcp sock we have added one instance of struct chirp
and three flags. is chirping indicates whether or not the con-
gestion control is currently chirping. The other two are for
disabling reaction to ECN marks and disabling default pac-
ing rate calculation. These to are not important for the gen-
eral chirping framework, but are necessary for Paced Chirp-
ing. disable cwr upon ecn prevents the kernel from entering
CWR when it receives an ECN mark. Every mark is give
to the congestion control module, so the information is not
lost. disable kernel pacing calculation prevents the kernel
from updating the pacing rate (sk pacing rate) which is nec-
essary during the transition phase from Paced Chirping to
congestion avoidance.

Listings 2 shows the new callback added to the congestion
control ops structure. The return value indicates whether or
not a new packet should be sent. 1 means that a new packet
should not be sent, and 0 means that a packet should be sent.
It can thus block sending of packets by returning 1 (or any
true value), which might be necessary when external pacing
is used to prevent excessive queueing between the TCP stack
and the NIC. The implementation of new chirp is expected to
fill in the struct chirp in tcp sock with information about the
next chirp. It can choose not to and return 0 to send packets
without any pacing. This is useful if the application does not
have enough data to use Paced Chirping.

Logic

The logic to realize the chirps are located in tcp write xmit
and tcp update skb after send. The code is listed in listing 3
and 4.

Listing 2: New cong ops callback

s t r u c t t c p c o n g e s t i o n o p s {

. . .

/∗ c a l l when c o n g e s t i o n c o n t r o l i n d i c a t e s t h a t i t i s
s e n d i n g c h i r p s

∗ and s t a c k does n o t have a c h i r p d e s c r i p t i o n a v a i l a b l e
.

∗ /
u32 (∗ n e w c h i r p) (s t r u c t sock ∗sk) ;

. . .

} ;

We will start by looking at tcp write xmit. First, The code
checks three things in sequence. It checks if chirping has
been requested. If it is then it check if the current chirp de-
scription is used. If the number of packets sent is greater or
equal to the number of packets in the chirp then the chirp
description is used. The third check is two purposed. The
return value whether or not a new packet should be sent. If
the congestion control returns 1 (or any true value) break is
executed preventing sending of the packet. If the congestion
control returns 0 the packet is sent as part of or not part of a
chirp. The congestion control can return 0 without providing
a new chirp description. The second purpose is to allow the
congestion control module to fill in the chirp descriptor in
tcp sock. (Maybe a NULL pointer check should be added?)

Second, it forces the segment limit to be MSS. Paced
Chirping only works if it controls the inter-packet gaps of
individual MSS sized packets. Time-based TSO with dy-
namic inter-packet gaps might be possible in the future. At
netdev 0x12 Van Jacobson held a keynote arguing for chang-
ing the NIC API from what to send to what to send and when
to send it[3]. If NIC vendors move to such an API it might
be possible to realise chirps in the NIC, which can improve
performance and pacing accuracy.

Discussion

A challenge with using external pacing is that congestion
control module gets a chirp request before the previous
chirps guard interval has expired. One way to deal with this
is to apply the guard interval using the internal pacing clock.
An other solution might be to have a check similar to TCP
small queues (either in the congestion control module or ker-
nel) to prevent excessive scheduling of chirps.

The pacing framework provides only an upper bound on
the data rate (lower bound on the inter-packet gaps).This
means that it might give you a larger gap than requested.
One situation where this can happen is when the guard inter-
val is applied using internal pacing and the CPU goes into a
power-saving state.

The chirp description is tailored for Paced Chirping. There

5

Listing 3: tcp write xmit

∗ b u t c a n n o t send a n y t h i n g now b e c a u s e o f SWS or a n o t h e r
problem .

∗ /
s t a t i c boo l t c p w r i t e x m i t (s t r u c t sock ∗sk , unsigned i n t

mss now , i n t nonag le ,

. . .

i f (t c p p a c i n g c h e c k (sk))
break ;

i f (tp−>i s c h i r p i n g &&
tp−>c h i r p . p a c k e t s <= tp−>c h i r p . p a c k e t s o u t &&
i n e t c s k (sk)−>i c s k c a o p s −>n e w c h i r p (sk)) {

break ;
}

. . .

l i m i t = mss now ;
i f (! tp−>i s c h i r p i n g && t s o s e g s > 1 && ! t c p u r g m o d e (

t p))

l i m i t = t c p m s s s p l i t p o i n t (sk , skb , mss now ,
m i n t (unsigned i n t ,

cwnd quota ,
max segs) ,

n o n a g l e) ;

. . .

}

might come other algorithms that want to send packets in a
different manner. The API could be made more generic by
having the gaps calculated in the congestion control module
removing all calculation from the pacing framework. This
would require either more memory in struct chirp or hav-
ing the congestion control module allocate memory for each
chirp and have a pointer to it in struct chirp.

We have yet to run the algorithm with reordering of pack-
ets. The start and end sequence numbers are absolutely crit-
ical for a congestion control module to identify which chirp
an acknowledgement belongs to. We foresee that reordering
in the border between chirps can pose a challenge.

4.2 Using the framework (congestion control
module)

To use the framework a congestion control module has to do
the following things.

Tell kernel to chirp Set is chirping to 1 (or any true value).
The kernel will check if this is set, and only then ask the con-
gestion control module for chirp descriptions as discussed
above.

Provide kernel with chirp descriptions Implement
new chirp callback. It should do one of the three first ac-

Listing 4: tcp update skb after send

s t a t i c vo id t c p u p d a t e s k b a f t e r s e n d (s t r u c t sock ∗sk ,
s t r u c t s k b u f f ∗skb ,

u64 p r i o r w s t a m p)
{

. . .

i f (sk−>s k p a c i n g s t a t u s != SK PACING NONE) {
unsigned long r a t e = sk−>s k p a c i n g r a t e ;

i f (tp−>i s c h i r p i n g) {
i f (tp−>c h i r p . p a c k e t s > tp−>c h i r p . p a c k e t s o u t) {

s t r u c t c h i r p ∗ c h i r p = &tp−>c h i r p ;
u64 l e n n s = c h i r p−>g a p n s ;
u64 c r e d i t = tp−>t c p w s t a m p n s − p r i o r w s t a m p ;

c h i r p−>g a p n s = (c h i r p−>g a p s t e p n s > c h i r p−>g a p n s)
?

0 : c h i r p−>g a p n s − c h i r p−>g a p s t e p n s ;
c h i r p−>p a c k e t s o u t ++;

i f (c h i r p−>p a c k e t s o u t == 1U) {
c h i r p−>b e g i n s e q = tp−>s n d n x t ;
c r e d i t = 0 ;
}

i f (c h i r p−>p a c k e t s o u t == c h i r p−>p a c k e t s) {
tp−>t c p w s t a m p n s += c h i r p−>g u a r d i n t e r v a l n s ; /∗Don

’ t care abou t c r e d i t s he re ∗ /
c h i r p−>e n d s e q = tp−>s n d n x t + skb−>l e n ;
i n e t c s k (sk)−>i c s k c a o p s −>n e w c h i r p (sk) ;
} e l s e {

/∗ t a k e i n t o a c c o u n t OS j i t t e r ∗ /
l e n n s −= m i n t (u64 , l e n n s / 2 , c r e d i t) ;
tp−>t c p w s t a m p n s += l e n n s ;
i f (c h i r p−>s c h e d u l e d g a p s) {

c h i r p−>s c h e d u l e d g a p s [c h i r p−>p a c k e t s o u t] = c r e d i t
+ l e n n s ;

}
}
}
}

. . .

}

6

Listing 5: new chirp callback

s t a t i c u32 d c t c p n e w c h i r p (s t r u c t sock ∗sk)
{

/∗ F i l l i n tp−>c h i r p and r e t u r n 0∗ /
/∗ Do n o t f i l l i n tp−>c h i r p and r e t u r n 0∗ /
/∗ Do n o t f i l l i n tp−>c h i r p and r e t u r n 1∗ /
/∗ F i l l i n tp−>c h i r p and r e t u r n 1 ?? ∗ /

}

s t a t i c s t r u c t t c p c o n g e s t i o n o p s d c t c p = {
. . .
. n e w c h i r p = d c t c p n e w c h i r p ,
. . .

} ;

tions in listing 5.

Enable pacing Pacing can be enabled by writing:
cmpxchg(&sk−>s k p a c i n g s t a t u s ,

SK PACING NONE ,
SK PACING NEEDED) ;

If you set is chirping to 1 but forget to enable pacing things
might go wrong.

Discussion

An useful check the congestion control module might want
to do is to check that there is enough data in the send buffer
for a chirp of size N. Maybe something like provide chirp if:

SK TRUESIZE (tp−>mss cache) ∗
(N + tp−>p a c k e t s o u t) <=
sk−>sk wmem queued

This can allow for fallback to regular slow start if the flow
is too small to use Paced Chirping, and remove unnecessary
overhead associated with chirping.

In previous versions of Paced Chirping the congestion
control module communicated the desired gaps through a
linked list of gaps. However, we realized that this was not
flexible enough for many scenarios. One of them being
smaller flows that does not need or can not use Paced Chirps.
In the previous versions the chirp was scheduled before the
congestion control module could look at the amount of data
the flow had scheduled.

5 Further work

• Conduct experiments over variable-rate links to iden-
tify potential challenges and improvements to the noise
filtering.

• Improve precision and interaction with existing slows
by exploiting ECN.

• Evaluate over the Internet.

• Handle loss and reordering.

• Handle delayed acks, and possibly look into how one-
way delay can be obtained and used.

6 Conclusion

Paced Chirping can become the solution to slow starts
dilemma; choosing between acceleration speed and queue
impact. Although there is much more work to be done we
have show the potential of Paced Chirping.

The code is open-sourced, and we encourage researches
and curious people to try it out and experiment with it.

References

[1] ALIZADEH, M., ET AL. Data Center TCP (DCTCP).
Proc. ACM SIGCOMM’10, Computer Communication
Review 40, 4 (Oct. 2010), 63–74.

[2] HA, S., RHEE, I., AND XU, L. Cubic: a new tcp-
friendly high-speed tcp variant. ACM SIGOPS operating
systems review 42, 5 (2008), 64–74.

[3] JACOBSON, V. Evolving from AFAP:
Teaching NICs about time. https://www.

netdevconf.org/0x12/session.html?

evolving-from-afap-teaching-nics-about-time,
July 2018.

[4] MANZOOR, J., DRAGO, I., AND SADRE, R. How
HTTP/2 is changing Web traffic and how to detect it. In
Network Traffic Measurement and Analysis Conference
(TMA), 2017 (June 2017), pp. 1–9.

[5] MISUND, J., AND BRISCOE, B. Paced Chirping: Rapid
flow start with very low queuing delay. In Proc. IEEE
Global Internet Symp. (May 2019), IEEE.

[6] RIBEIRO, V. J., RIEDI, R. H., BARANIUK, R. G.,
NAVRATIL, J., AND COTTRELL, L. pathChirp: Ef-
ficient Available Bandwidth Estimation for Network
Paths. In Passive and Active Measurement Workshop

(PAM’03) (2003).

7

https://www.netdevconf.org/0x12/session.html?evolving-from-afap-teaching-nics-about-time
https://www.netdevconf.org/0x12/session.html?evolving-from-afap-teaching-nics-about-time
https://www.netdevconf.org/0x12/session.html?evolving-from-afap-teaching-nics-about-time

	Introduction
	Paced Chirping
	Fast acceleration and low latency

	When to Trigger Paced Chirping
	Implementation
	Kernel code changes
	Using the framework (congestion control module)

	Further work
	Conclusion

