
PI2 Parameters

Bob Briscoe*

27 Oct 2021

Abstract

This report gives the reasoning for the setting of the

target queue delay parameter in the reference Linux

implementation of the PI2 AQM.

1 Introduction

This report explains the reasoning behind the set-
ting of the queue delay target in the reference
Linux implementation of the PI2 AQM1. This set-
ting is documented as a pseudocode example in
Figure 2 (in Appendix A) of the IETF specifica-
tion of the Coupled DualQ AQM [DSBEW21]. In
both cases, the PI2 AQM is used for the Classic
queue within the dual-queue structure called Du-
alPI2. Nonetheless, the parameter settings for PI2

discussed here apply irrespective of whether a PI2

AQM stands alone or within a dual-queue struc-
ture. The discussion of the target parameter also
applies to a PIE AQM [PPP+13].

Similar reasoning for the parameter settings
was behind the technical report produced in
2015 [dSBTB15] to support standardization of the
Coupled DualQ AQM. The present report spells out
all the details that were glossed over at that time,
and adds some more recent analysis, resulting in a
slightly higher figure.

The task for this report is to choose a compro-
mise default for target that minimizes queue delay
for Classic traffic without causing under-utilization
over path RTTs that are commonly experienced by
most Internet users.

2 Terminology

The schematic plots of one cycle of queue delay
against time for two different congestion controllers
(Reno and Cubic) in Figure 1 define our terminol-
ogy. We use q(t) as the time-varying queue delay in

*research@bobbriscoe.net,
1 https://github.com/L4STeam/sch_dualpi2_upstream

Figure 1: Definition of terms

units of time, and d(t) as the additional queue de-
lay above the minimum, that is d(t) = q(t)− qmin.
q0 is the mean queue delay for a particular geom-
etry of sawtooth and dmax is the amplitude of the
cycles, in units of time. The fraction, λ0 of the am-
plitude that sits below the average depends solely
on the geometry of the sawtooth curve. A related
fraction, λ (not shown) is defined as the fraction of
the amplitude that sits below the AQM’s operating
point, target.

The instantaneous RTT, R(t), varies because it
consists of the constant base delay of the path,
Rb, and variable queue delay q(t), that is R(t) =
Rb + q(t). Alternatively, R(t) = Rmin + d(t).

A Classic congestion controller’s min window is re-
lated to its max window by the multiplicative fac-
tor, b, of the congestion controller: Wmin = bWmax.
This leads the RTT to cycle between Rmin and
Rmax, around the average R0. Similarly queue de-
lay cycles around q0 between qmin and qmax.

The IETF’s specification of Cubic [RXH+18] uses β
for the multiplicative decrease factor, but we use b
to avoid confusion with the proportional gain factor
β of a PI AQM. Similarly, we use a (rather than α)
for the additive increase factor of Reno, or of Cubic
in its Reno-friendly mode. Where necessary, we use
the subscripts ’r’ or ’c’ to distinguish parameters

© bobbriscoe.net Ltd, 2021 Version 03 1 of 13

mailto:research@bobbriscoe.net
https://github.com/L4STeam/sch_dualpi2_upstream


TR-BB-2021-001 PI2 Parameters

used by Reno or Cubic in Reno mode (‘CReno’).

3 Scaling of Queue Variation

Assumption 1: We are interested in the operat-
ing point that the queue cycles around un-
der stable conditions, so we consider only
long-running flows and fixed capacity links.
Within this assumption of a stable environ-
ment, we consider a single flow as the worst-
case for queue variability (and a fairly com-
mon case in access link bottlenecks). Given
the long-running flow assumption, we also as-
sume packet size is 1500 B, where a feel for a
packet rate is given as a bit rate.

The schematics in Figure 2 show how different
Linux congestion controls vary the queue delay of a
single flow around the mean and how the variation
scales with base RTT and link capacity. The scales
of the plots are all the same, but actual numerical
values of queue delay and time are irrelevant for
this visualization.

The following two subsections consider how queue
variation due to a single flow scales with base RTT
and with link capacity. Then subsection 3.4 dis-
cusses the geometry, position and prevalence of dif-
ferent sawtooth shapes.

3.1 Scaling of Q Variation with RTT

Assumption 2: Our goal is to find a value of
target that prevents the queue from com-
pletely draining at the bottom of each saw-
tooth cycle. Therefore, our analysis assumes
that is the case because, when it is not, the
analysis does not need to apply. So, we can
assume constant delivered packet rate, r, given
we also assume constant link capacity for sim-
plicity (despite being unrealistic). Then, given
that the window, W = r ∗ R, the RTT, R,
varies in direct proportion to the window.

Assumption 3: As a first-order approximation,
we assume that queue delay tracks the win-
dow instantly, even though it actually takes a
round trip to catch up. And we don’t consider
smoothing of window reductions, e.g. Propor-
tion Rate Reduction. These approximations
overestimate the amplitude of queue variation
a little, especially when the window reduces
sharply then increases sharply (as it does when
Cubic responds to congestion). However, these
approximations are close enough for our pur-
poses.

Figure 2: Scaling of queue delay variability with
average RTT (increasing downwards) and link ca-
pacity (increasing to the right)

By Assumption 2,

Rmin = bRmax (1)

Then the algebra below shows that sawtooth am-
plitude is related to average RTT by a constant
factor,

R0 = Rmin + λ0(Rmax −Rmin)

= Rmax(λ0 + b− λ0b) (2)

dmax = Rmax −Rmin

= (1− b)Rmax

=
(1− b)

(λ0 + b− λ0b)
R0.

This is why, starting at the top left and working
down the schematics for each congestion control
in Figure 2, it is shown that the amplitude of the
queue variation grows linearly with average RTT.2

This linear scaling of queue variability with RTT
only relies on multiplicative decrease, so it is just
as true for either mode of Cubic as it is for Reno.

2 At least, it does while the sawteeth do not drain the queue
completely, by Assumption 2. Where this assumption
breaks down—in the plots labelled ‘RTT ×3’ for a) Reno
and c) Cubic mode—for visualization purposes light grey
traces extrapolate where the plots would be if the queue
could be negative.

2 of 13 Version 03 © bobbriscoe.net Ltd, 2021



PI2 Parameters TR-BB-2021-001

Figure 3: Transition of the position of a Cubic/CReno sawtooth relative to the PI2 AQM target (15 ms).
Base RTT: 10 ms, Link rate (left to right): 4 Mb/s, 40 Mb/s, 200 Mb/s.

Figure 4: Transition (shaded) of relationship between CReno sawteeth and PI2 AQM target. Below
the range, CReno sawteeth average at target. Above the range they peak at target

.

3.2 Scaling of Queue Variation with
Link Capacity

More link capacity allows either more flows or
more throughput per flow. But in the edge links
giving access to the Internet, which tend to be
the bottleneck links, the number of simultaneous
flows is still low, and single lone flows remain com-
mon [RBB+15].

If link capacity doubles, the delivered packet rate
(and the average window) of a single flow doubles
too. Nonetheless, the PI2 AQM holds the average
RTT, R0, at the same operating point3. Then, for
a particular congestion control, by Equation 1 &
Equation 2 the max and min RTT are related to
the average RTT by constant factors, so they also
remain unchanged.

Therefore, qmax and qmin also remain unchanged
as link capacity scales (shown in the right-hand
column of Figure 2).4 This also means that queue
delay variation when the upstream is filled by a
single flow is no different from the variation when a
single flow fills the downstream, even if the capacity
is asymmetric.

Incidentally, the scaling of the cycle duration (along
the horizontal time axis in Figure 2) is not directly

3 This assertion will be qualified in § 3.3
4 See footnote 3

relevant to queue variation, but Appendix C briefly
explains why it is indirectly relevant in two ways.

3.3 Sawtooth Position

As link rate scales, the assertion that the PI2 AQM
holds the average RTT, R0, at target needs quali-
fication. It is true when the sawtooth cycle is short,
as shown on the left of Figure 3. However, as the
duration of the cycles increases from left to right,
the sawteeth are increasingly pushed down so that
only their tips touch the target.

PI2 samples the queue and updates its drop prob-
ability every update time (Tupdate = 16 ms by
default). The PI controller determines the size
of each of its probability alterations to bring de-
lay under control at two different timescales that
are controlled by the gain factors α and β: the
Integral term of the controller brings the standing
queue back to target within about PI2Rmax (de-
fault 100 ms); while the Proportional term catches
variations an order of magnitude faster.

At low bandwidth-delay product (BDP)5, when the
duration of each sawtooth (the ‘recovery time’) is

5 Strictly, for AIMD congestion controls, the effect depends
on the product of packet rate and the square of delay, so
we should say at low BDDP.

© bobbriscoe.net Ltd, 2021 Version 03 3 of 13



TR-BB-2021-001 PI2 Parameters

less than the AQM’s update time, Tupdate, the
AQM will never be able to track the rise and fall of
each sawtooth; so its probability will remain steady
and it will hold only the average level of delay at
target. For CReno, this is the region under the fine
dashed line that delineates the floor of the shaded
transition range, which is plotted in Figure 4 over
a space covering a range of flow rate-RTT combi-
nations.

When the recovery time is well above the AQM’s
maximum design RTT (PI2Rmax), the AQM will be
able to track the sawteeth fairly closely. So when
queue delay reaches target, the AQM will emit a
drop or ECN-mark and the subsequent sawteeth
will settle with their peaks just above target. For
CReno, this is the region well above the shaded
transition range shown in Figure 4.

When the recovery time of the sawteeth is the same
as the time that the AQM takes to converge on
its target (PI2Rmax, default 100 ms), the AQM
can start to track the variations in the sawtooth,
but not quickly enough to keep up. For CReno,
this is shown as the thick dark blue curve in the
middle of the shaded transition range in Figure 4.
In the shaded transition region around this central
curve the sawtooth settles with target somewhere
between its average and its peak.

This effect is less pronounced with Cubic sawteeth
than AIMD, because Cubic sawteeth spend more
of their duration close to the average, with only
a brief large deviation at the start. However, for
sufficiently long sawteeth the AQM will still track
the sawtooth itself, not just the average.

It is hard to derive the position of the sawteeth an-
alytically, so we resort to estimating the fraction of
the sawtooth amplitude empirically (visually) from
large numbers of time series plots. This, in turn,
is hard given the point at which the sawtooth re-
duces is randomized, by design. Nonetheless, once
the cycle time is well above the transition region,
on average AIMD sawteeth tend to settle with the
AQM target about 90% of the amplitude above the
minimum. Whereas Cubic sawteeth tend to set-
tle lower down the sawtooth—nearer to 85% of the
amplitude (the average height of a cubic cycle is
75% of its amplitude according to Equation 10 in
Appendix B).

If the BDP of a Cubic flow is high enough to put it
into true Cubic mode, its long recovery time invari-
ably places it above the transition range. At the
time of writing (2021) most lone Cubic and CReno
flows have large enough recovery time to be above
the transition range, but a significant minority of
CReno flows are within or even slightly below this
range.

3.4 Sawtooth Geometry

The fraction, λ0, of the sawtooth amplitude that
lies below the average is important when determin-
ing the target queue delay. For an AIMD sawtooth,
Equation 8 in Appendix A gives a good approxima-
tion6 as:

λ0 =
(2 + br)

3(1 + br)
.

And, for b ≥ 1/2 a sufficient approximation is λ0 ≈
1/2. For a Cubic sawtooth, Appendix B proves that

λ0 = 3/4,

whatever the value of bc.

The “Great TCP Congestion Control Census”
[MSJ+19] conducted by Mishra et al in Jul–Oct
2019 found that Cubic was the most used by nearly
31% of the Alexa top 20k web sites, but BBR was
approaching 18%, and already had a larger share of
the Alexa top 250, as well as contributing 40% by
downstream traffic share.7 Of the 51% of the Alexa
top 20k sites that were not using either Cubic or
BBR, 19% were split between eight other known
controllers, the greatest shares being for YeAH and
CTCP or Illinois at under 6% each. The remain-
ing 32% were unidentifiable, including sites that
were unresponsive or did not serve anything large
enough to be testable. As part of that remaining
32%, nearly 17% of the total were using an un-
known congestion controller and further investiga-
tion found nearly 6% of the total were using an
undocumented Akamai controller.

BBRv2 [CCYJ17] supports L4S when it detects
ECN marking, so it is unlikely to use the Classic
queue. This leaves 67% of sites that use some form
of Classic congestion control, of which 46% use Cu-
bic and the remainder is split across a dozen or so
other algorithms, many of which, like Cubic, at-
tempt to be friendly to Reno at low BDP.

Based on recent predictions, more than two-thirds
of Internet traffic now emanates from Content Dis-
tribution Networks (CDNs) or cloud services dis-
tributed to locations close to, and often within, the
metro area or regional network of the end-user’s
ISP [LR20].

Figure 5 illustrates how likely it is that Cubic con-
gestion control runs in its Reno mode for CDN traf-
fic over a PI2 AQM. The figure visualizes the av-
erage CDN RTT8 under load against average fixed
downstream bandwidth per household.

6 See Appendix A for the full approximation conditions.
7 The census did not investigate congestion controls used

by QUIC.
8 Both fixed and mobile—the study did not measure fixed

and mobile separately. Nonetheless, RIPE Atlas probes
are generally connected to fixed access links although
some are connected via Ethernet to mobile broadband.

4 of 13 Version 03 © bobbriscoe.net Ltd, 2021



PI2 Parameters TR-BB-2021-001

Figure 5: Scatter-plot per country of average user to CDN RTT under load against average fixed
downstream access bandwidth. RTT is taken as if it is under load over the PI2 AQM under study,
so RTT = base RTT plus 10 ms (see text for explanation). Only the 43 countries with the most Internet
users are plotted, representing 90% of Internet users. The top ten are labelled as well as those at the
extremes. The curve overlaid on the plot is where the Cubic congestion control in Linux switches over
from Reno mode to pure Cubic mode

To roughly model latency under load, the base RTT
from Appendix D is increased by λ0 ∗ target to
represent how much the average RTT would shift
deeper into the queue until the tips of the sawteeth
would hit the PI2 AQM’s target. Given the Cubic
congestion control switches into cubic mode as its
BDP rises along the sawtooth, there is a hybrid re-
gion where the bottoms of the sawteeth are CReno
and the tops Cubic. Therefore we set λ0 to the av-
erage of λ0creno = 9/17 and λ0cubic = 3/4, that is
0.64. Hence the uplift of 0.64 ∗ 15 ms ≈ 10 ms.9

In order not to clutter the plot, the countries ranked
highest by number of Internet users are plotted
until together they represent over 90% of Internet
users. The countries labelled in black are the top
10 ranked by number of users (see Appendix D for
the detailed data and sources). As points of inter-
est, the countries at the extremes are also labelled,
but in red.

It can be seen that a large proportion of Internet
users sit at or below the upper limit of Cubic’s
Reno-friendly mode for a single flow. The countries
above the switch-over curve other than China and
Russia together account for about 7% of Internet

9 It will not go unnoticed that there is a circular dependency
here, where we have to assume the target chosen for the
PI2 AQM as part of the process of determining it.

users. There is a question mark over the CDN RTT
in China, which might place China’s point at lower
RTT (see Appendix D). Given this unexplained
but highly significant outlier, for now we take the
weighted average excluding China, which is 25 ms.

As link rates continue to scale, the points are ex-
pected to shift inexorably to the right. However,
for some considerable time to come, Cubic could
remain in Reno mode for many users because, as
CDN deployment continues and as focus shifts to
latency as well as bandwidth, the points are also ex-
pected to shift downwards10 as they have already
done in the more mature deployments in N Amer-
ica, the Pacific rim and Europe (the larger Euro-
pean countries are all in the cluster to the left of
the US and Japan). Also remember that we have
chosen to examine the worst case of a single down-
stream flow; whenever there are more simultane-
ous flows, the points shift back to the left, into the
Reno region. And, where capacity is asymmetric,
upstream flows also sit further to the left.

The curve overlaid on Figure 5 shows the relation-
ship between throughput and RTT at the switch-

10 This will continue to reduce the global typical RTT
(RTT typ) so that it will become possible to reduce the
default target of PI2, thus reducing the uplift of all the
points, in turn shifting more of them below the switch-
over curve.

© bobbriscoe.net Ltd, 2021 Version 03 5 of 13



TR-BB-2021-001 PI2 Parameters

over between CReno and Cubic. It is derived from
the formulae for the steady-state packet rate in
Cubic’s Reno mode (Equation 3) and in pure cu-
bic mode (Equation 4), as given below, assuming
1500B packets (Assumption 1).

rcreno =
1

R

(
3

2p

)1/2

(3)

rcubic =

(
C(3 + bc)

4(1− bc)p3R

)1/4

(4)

At the same AQM loss probability, p, the packet
rate, rcubic equals rcreno when the switchover RTT
is

R =

(
27(1− bc)

2C(3 + bc)r2

)1/5

(5)

We can plug in the Cubic parameters recommended
in RFC8312 [RXH+18] and used in all known im-
plementations, that is multiplicative decrease fac-
tor bc = 0.7; aggressiveness constant C = 0.4
in cubic mode; and additive increase factor ac =
3(1−bc)/(1+bc) = 0.53 in Reno-friendly mode.11,12

R =
1.22

r2/5
=

(
1.65

r

)2/5

. (6)

In summary, in the immediate future, the preva-
lent sawtooth geometry of Classic traffic is likely
to be dominated by the Reno mode of Cubic, with
λ0 ≈ 1/2 and bc = 0.7. Whether more traffic shifts
to true Cubic geometry or stays as CReno depends
on whether, and how much, latency reduction over-
takes bandwidth increase as the predominant global
trend in performance improvement.

4 Typical Base RTT

A globally typical RTT for CDN traffic is calcu-
lated in Appendix D. The average RTT for each
country is weighted by the Internet user population
in that country, as collated on Wikipedia [Wik20]
from multiple primary sources. The countries are
ranked in order of user population until 90% of the
total Internet users in the world are covered. The
CDN RTT per country is based on measurements

11 Appx. A of [DSBTB16] wrongly states that Linux uses
C = 0.6 and ac = 1, which leads to incorrect constants in
the resulting equations. Equation 3 & Equation 6 respec-
tively correct equations (7) & (8) in that paper.

12 The coefficient of 1.22 in Equation 6 is coincidentally the
same to 2 dec. places as the

√
3/2 coefficient in Equa-

tion 3. However, it can be seen from its derivation that it
is unrelated.

by Beganović in 2019 using RIPE Atlas probes de-
ployed by self-selected volunteers in what is claimed
to be the largest Internet measurement infrastruc-
ture in the world [Beg19].

The resulting weighted average RTT to CDNs is
34 ms. However, there is a question-mark over some
of the latency figures, given the measurements were
all taken to 7 CDNs with global coverage, which
might not be representative of the CDN market in
certain countries). The data point for China is a
particularly suspect outlier given the CDNs used
for the measurements excluded all the top CDNs
in China (see Appendix D). Therefore, we have
decided to exclude it pending further investigation,
given the weighted average is so sensitive to an error
in this single data point. This results in a weighted
average RTT to CDNs of 25ms.

As a sanity check, 25 ms compares reasonably well
with the global averages given on Ookla’s Speedtest
Global Index page:

� 20 ms fixed and 37 ms mobile (Apr 2021 data);
� 24 ms fixed and 42 ms mobile (Apr 2020 data).

Ookla’s data is collected from self-selecting users
who use speedtest’s algorithm to find the closest
CDN-based servers [Ook21]. The page gives a sin-
gle global figure without details of the method used.

5 Default target

When selecting a global default for target, the aim
is to ensure that the AQM keeps queue delay rea-
sonably low while not compromising utilization for
a large majority of users. If the target were set at
the median delay, it would cause under-utilization
for half the global user population. So ideally a
latency figure for say the 75th or 90th percentile
of users would be used to derive target, but only
data on averages not percentiles is available glob-
ally (§ 4).

Therefore, a ’safety factor’ is applied to the average
RTT between users and CDNs, which has to allow
for the statistical distribution of RTTs to CDNs,
particularly for users in rural areas [KKFR15], who
will be further from the nearest CDN and who are
also likely to have least bandwidth and therefore
be least willing to see it eaten by under-utilization.
The safety factor also has to allow for flows between
clients and servers other than those in CDNs. As an
interim educated guess, we apply the safety factor,
f = 2.

Next we draw together all the strands of the anal-
ysis of sawtooth scaling, positioning and geometry
in § 3, in order to derive a default target. To avoid

6 of 13 Version 03 © bobbriscoe.net Ltd, 2021



PI2 Parameters TR-BB-2021-001

underutilization for most users, we want fRtyp to
sit at least at the minimum of the sawteeth, Rmin.

According to the discussion on sawtooth position-
ing in § 3.3, BDPs have often, but not always, be-
come high enough that sawteeth will settle with
their tips tending down towards the target operat-
ing point of a PI2 AQM, rather than their average.

Therefore the fraction, λ, of the amplitude that will
be below target can be used to relate target to
the minimum RTT:

target = λ(Rmax −Rmin)

=
λ(1− b)

b
Rmin,

where λ has to be estimated from the actual geo-
metric fraction of the amplitude below the average,
λ0, but also takes into account the discussion in
§ 3.3. Therefore, finally we can say:

target ≈ λ(1− b)f
b

Rtyp (7)

We call λ(1 − b)/b the geometry factor. The geometry
factors of a selection of congestion controls (CCs)
are tabulated below (Cubic in Reno mode is ab-
breviated to CReno). Their geometry parameters
are as recommended in the RFCs, which all known
implementations follow.

CC λ0 λ b λ(1 − b)/b w

Reno 1/2 0.9 0.5 0.90

CReno 1/2 0.9 0.7 0.39 70%

Cubic 3/4 0.85 0.7 0.36 30%

Taking account of the mix of congestion controls
discussed in § 3.4, but without modelling all the
minor players, we use a weighted average of CReno
and Cubic using the weight, w shown in the above
table (based on the discussion in § 3.4), which gives
a geometry factor of about 0.38. Thus, for PI2 we
suggest setting the default to:

target = 0.38 ∗ 2 ∗ 25 ms

= 19 ms.

Over time, as CDN deployment continues, Rtyp will
continue to reduce, evidenced by the latency re-
duction between 2020 and 2021 in the Ookla fig-
ures above: 17% fixed, 12% mobile. So the default
target could be reduced in future. That in turn
will reduce RTT further, with the knock-on effect
of keeping more Cubic flows in Reno mode, thus re-
inforcing the applicability of the lower target for
AQMs.

Other implementations intended for particular link
technologies might use a different default today.
For instance, the Low Latency DOCSIS specifica-
tion [DOC19] uses target = 10 ms, which perhaps
makes sense because cable technology is less likely
to extend to rural areas, so the distribution around
the average RTT is likely to be considerably tighter.
By a similar argument, the default target for mo-
bile networks might need to be greater than recom-
mended here, depending on how well 5G meets its
aspirations to reduce base RTT.

Of course, operators are free not to use the default
target for out-of-the-ordinary environments. For
instance, they could configure a higher target for
satellite links and remote rural locations; or a lower
target for highly concentrated urban deployments.
Nonetheless, the purpose of this report has been to
recommend a default that would be suitable across
the Internet.

6 Acknowledgements

Thanks to Vidhi Goel for pointing out the need
to use RTT under load in the Cubic switch-over
scatter-plot; to Asad Sajjad Ahmed for the empir-
ical plots; to Neal Cardwell for pointing out the
erroneous parameters used for Linux Cubic; and to
Koen De Schepper for pointing out the need to con-
sider sawtooth geometry and for pointing out the
significance of the max RTT of the AQM, not just
Tupdate, in the sawtooth position analysis. The
author alone is to blame for any remaining errors.

© bobbriscoe.net Ltd, 2021 Version 03 7 of 13



TR-BB-2021-001 PI2 Parameters

A Average Queue Over a Reno
Sawtooth

The following analysis determines the fraction λ0 of
the amplitude of a Reno sawtooth that sits below its
average. It is generalized for any additive increase
of a segments per round (which may be fractional).
Terminology and assumptions are defined in the
body of the paper (§ 2 & § 3).

Reno’s congestion window increases by a segments
per round,

Wr(j) = Wmin + ja,

where j is an index of the rounds since the last
reduction. By the same reasoning as in § 3, while
the link is not underutilized, Reno’s RTT is directly
proportional to its congestion window:

Rr(j) = Rmin +
ja

r
,

where r is the packet rate, so a/r is the delay added
to the queue by one round of additive increase. For
brevity we will use Ra = a/r to denote this addition
to the RTT per round. By our assumption that the
queue is never allowed to drain completely, we can
remove the minimum queue delay from the equation
and focus solely on the additional delay above the
minimum,

d(j) = jRa.

Then the fraction of the amplitude that sits below
the average,

λ0 =
E{d(t)}
dmax

=
E{d(t)}

Rmin(1− b)/b
.

Within a cycle, the queue above the minimum aver-
aged over time, E{dr(t)}, is the extra queue above
the minimum in each round weighted by the dura-
tion of each round then divided by the sum of the
weights. The duration of each round is the RTT
itself. Thus,

λ0 =

∑J−1
j=0 (Rmin + jRa)jRa

/∑J−1
j=0 (Rmin + jRa)

Rmin(1− b)/b

Approximating J(J − 1) as J2, and using the stan-
dard result for a sum of squares without approxi-
mation, then simplifying:

≈ J2RminRa/2 + (J3/3 + J2/2 + J/6)R2
a

(JRmin + J2Ra/2)Rmin(1− b)/b

≈ 3JRminRa + (2J2 + 3J + 1)R2
a

(6R2
min + 3JRminRa)(1− b)/b

The maximum value of j under stable conditions
can be found by equating the additive increase over
a cycle to the multiplicative decrease,

JRa = Rmin(1− b)/b.

Substituting for J , then collecting terms and sim-
plifying further,

λ0 =
3R2

min + (2R2
min(1− b)/b+ 3RminRa +R2

ab/(1− b)
(6R2

min + 3R2
min(1− b)/b)

=
(2 + b)/b+ 3Ra/Rmin + b/(1− b)R2

a/R
2
min

3(1 + b)/b

=
(2 + b)

3(1 + b)
+

b

(1 + b)

Ra
Rmin

+
b2

3(1− b2)

(
Ra
Rmin

)2

≈ (2 + b)

3(1 + b)
if Ra � Rmin(1 + b)/b . (8)

Then, for standard Reno with b = 1/2,

λ0 ≈ 5/9 ≈ 0.556.

And for Cubic-Reno with b = 0.7,

λ0 ≈ 9/17 ≈ 0.529.

λ0 ≈ 1/2 is a good enough approximation for many
purposes, including for the present paper.

B Average Queue Over a Cu-
bic Sawtooth

The following analysis determines the fraction λ0

of the amplitude of a Cubic sawtooth that sits be-
low its average. Terminology and assumptions are
defined in the body of the paper (§ 2 & § 3).

The formula for the congestion window of a Cubic
sawtooth is defined in IETF RFC 8312 [RXH+18]
as,

Wc(t) = Wcmax + C(t−K)3,

where C is a constant (0.4 in known implemen-
tations, as recommended in RFC 8312 [RXH+18])
and:

K =

(
Wcmax(1− b)

C

) 1
3

,

where b is the multiplicative decrease factor already
defined in § 2 (recommended and implemented as
0.7).

By the same reasoning as in § 3, while the link is not
underutilized, Cubic’s RTT is directly proportional
to its congestion window:

Rc(t) = Rcmax +
C(t−K)3

r
,

K =

(
rRcmax(1− b)

C

) 1
3

.

8 of 13 Version 03 © bobbriscoe.net Ltd, 2021



PI2 Parameters TR-BB-2021-001

The average RTT over a cycle, E{Rc(t)}, is then13

Rc0 =
1

K

∫ K

0

Rcmax +
C(t−K)3

r
dt,

=
1

K

[
Rcmaxt+

C(t−K)4

4r

]K
0

= Rcmax −
CK3

4r

Substituting for K:

= Rcmax
(3 + b)

4
. (9)

Then, for a single Cubic sawtooth, the fraction of
the amplitude that sits below the average is

λ0c =
(Rc0 −Rcmin)

(Rcmax −Rcmin)

=
Rcmax

(
(3+b)

4 − b
)

Rcmax(1− b)

=
3

4
. (10)

Thus, λ0c is constant for any b ∈ [0, 1).

C Scaling of AIMD Cycle Du-
ration

Scaling of the cycle duration with flow rate is not
directly relevant to the setting of PI2 parameters,
but it does affect utilization in two indirect but
important ways:

� As flow rate scales, cycle duration increases
relative to the fixed update time of the PI2

AQM. over a transition range of flow rates, the
queue delay sawtooth shifts down relative to
the AQM target (see § 3.3), potentially leading
to poorer utilization at rates above the transi-
tion.

� A Classic congestion control responds to a sin-
gle loss or ECN mark, so losses and ECN marks
have to be completely absent during a cycle for
a flow to maintain full utilization. The longer
the duration of each cycle, the more likely that
some extraneous event will occur, e.g. the ar-
rival of a brief flow or loss due to a transmission
error. This noise sensitivity of Classic flows be-
comes the dominant determinant of utilization
the more flow rate scales (see footnote 6 of Ja-
cobson & Karels [JK88]).

13 A continuous integral rather than discrete sum is a suffi-
cient approximation.

Under the same assumptions as defined in § 3, cycle
duration (or recovery time), Tr, depends on base
RTT, Rb, and packet rate, r, as follows.

For an AIMD congestion control the increase and
decrease balance in steady state,

Ja = Wmax −Wmin

= Wmin(1/b− 1)

= rRmin
(1− b)
b

J = rRmin
(1− b)
ab

(11)

where J is the number of rounds between reduc-
tions. Then the recovery time,

T =

J−1∑
j=0

(
Rmin +

ja

r

)

= JRmin +
J2a

2r
,

approximating J(J−1) as J2, then substituting for
J from Equation 11,

= rR2
min

(
(1− b)
ab

+
(1− b)2

2ab2

)
= rR2

min

(1− b2)

2ab2
. (12)

And from Equation 1 & Equation 2

= rR2
0

(1− b2)

2a(λ0 + b− λ0b)2

and from Equation 8,

= rR2
0

9(1 + b)3(1− b)
8a(1 + b+ b2)2

. (13)

For Reno, ar = 1, br = 1/2:

Tr =
3

2
rR2

min

=
3

8
rR2

max

=
243

392
rR2

0 ≈ 0.62rR2
0. (14)

For CReno, ac = 3(1− bc)/(1 + bc), bc = 0.7:

Tc =
(1 + bc)

2

6b2
rR2

min

=
289

294
rR2

min ≈ 0.98 rR2
min

=
289

600
rR2

max ≈ 0.48 rR2
max

=
3(1 + bc)

4

8(1 + b+ b2)2
rR2

0 ≈ 0.65 rR2
0. (15)

© bobbriscoe.net Ltd, 2021 Version 03 9 of 13



TR-BB-2021-001 PI2 Parameters

As a double check, the recovery times in terms of R0

should be roughly the same for Reno and CReno,
by design (that for CReno should be a little greater,
because it is less curved).

This scaling of cycle duration is important to un-
derstand, as follows:

� Additive increase of a constant amount of data
per round trip causes the duration of a sin-
gle flow’s sawtooth cycle to double for every
doubling of link rate. This can be seen for
a) Reno and b) Cubic in Reno mode in the
right-hand column of Figure 2. But for every
doubling of the RTT (whether min, max or
mean), the duration of each cycle quadruples,
as illustrated by Equation 12 or its subsequent
variants. This is because it takes double the
number of RTTs to regain its window, but also
each RTT is double the length.

� In contrast, the cycle duration of a purely
Cubic congestion control scales with the
cube-root of bandwidth-delay product (BDP)
[RXH+18]. So, as link capacity or RTT dou-
bles, the duration of the cycles of a single flow
grows by 21/3 ≈ 1.26, as can also be seen for
c) Cubic in the right-hand column of Figure 2.

Note, though, that the amplitude of Cubic’s queue-
delay variation still scales like Reno, i.e. linearly
with RTT and invariant with link capacity, because
it is determined by the multiplicative decrease.

D Typical User to CDN RTT

Beganović [Beg19] provides the average RTT mea-
sured using ICMP ping from probes in each country
to sites known to be served by CDNs. The data was
collected from RIPE Atlas probes deployed by vol-
unteers around the world, and was last updated on
17 Apr 2019.

The data is tabulated below and visualized in Fig-
ure 6. At the bottom of the table, an average
is derived, weighted by the population of Internet
users in each country (taking the countries with
the highest Internet user populations until 90% of
the world’s total Internet users are covered). The
per-country data on numbers of Internet users was
taken from Wikipedia [Wik20], which in turn used
population figures for each country, usually from
the US Census Bureau, and various estimates of

the percentage of Internet users in each country,
mostly provided by the ITU.

The measurements were taken to the following
seven global CDNs:

� Akamai
� AWS Cloudfront
� Microsoft Azure
� Cloudflare
� Google Cloud CDN
� Fastly
� Cachefly

The data point for China seems uncharacteristic for
countries of similar size and market maturity. It is
possible that it is suspect, perhaps because mea-
surements to large Chinese CDN providers such as
the following were not included in the RIPE Atlas
study: ‘

� Alibaba Cloud
� Baidu Cloud
� BaishanCloud
� ChinaCache
� Tencent Cloud

Given users in China make up nearly a quarter
of the global total, the weighted average would be
sensitive to any large error in the CDN latency
for users in China. For instance, if the latency
figure just for China was reduced from 66ms to
20ms (bringing it in line with India), the global
weighted average would drop from 34ms to 24ms.
Therefore, for now we exclude the data point for
China, resulting in a weighted average CDN latency
of 25 ms.

Figure 6 shows the countries ranked highest by
number of Internet users until together they con-
tain over 90% of Internet users. This avoids clut-
tering the plot. Further, the countries labelled in
black are the top 10 ranked by number of users.
The stripe of points with higher RTT than 66 ms
together represent less than 5% of the total users
in the plot. If the EU were one country its point
would sit in the cluster to the left of the US and
Japan, which represent the larger countries in Eu-
rope. As points of interest, the countries at the
extremes are labelled in red (Nigeria is both in the
top 10 by user population, and it has the lowest
latency, tying with South Korea).

‘

10 of 13 Version 03 © bobbriscoe.net Ltd, 2021



PI2 Parameters TR-BB-2021-001

Country Population % of Internet users Fixed bandwidth (Mb/s) CDN latency (ms)

popul’n [Wik20] [Ook21] [Beg19]

China 1,427,647,786 69.27% 988,990,000 172.95 66

India 1,366,417,754 55.31% 755,820,000 55.76 20

United States 324,459,463 96.26% 312,320,000 191.97 14

Indonesia 266,911,900 79.56% 212,354,070 26.31 21

Brazil 213,300,278 75.02% 160,010,801 90.3 21

Nigeria 205,886,311 66.15% 136,203,231 16.33 4

Russia 143,989,754 82.39% 118,630,000 87.01 30

Japan 127,484,450 91.27% 116,350,000 167.18 8

Bangladesh 164,945,471 70.41% 116,140,000 36.02 39

Pakistan 213,756,286 47.10% 100,679,752 11.74 41

Mexico 128,972,439 69.01% 89,000,000 48.35 30

Iran 83,020,323 94.06% 78,086,663 19.17 76

Germany 82,114,224 94.74% 77,794,405 120.93 14

Philippines 104,918,090 69.58% 73,003,313 49.31 25

Vietnam 97,338,579 70.04% 68,172,134 66.38 23

United Kingdom 66,181,585 98.22% 65,001,016 92.63 11

Turkey 80,745,020 76.88% 62,075,879 34.95 41

France 64,979,548 89.32% 58,038,536 192.25 14

Egypt 101,545,209 53.91% 54,740,141 39.66 81

Italy 60,416,000 83.65% 50,540,000 90.93 19

South Korea 50,982,212 96.94% 49,421,084 241.58 4

Spain 46,750,321 90.70% 42,400,756 186.4 11

Thailand 69,037,513 52.89% 36,513,941 206.81 24

Poland 38,382,576 90.40% 34,697,848 130.98 12

Canada 36,624,199 92.70% 33,950,632 167.61 19

Argentina 44,271,041 75.81% 33,561,876 51.51 19

South Africa 56,717,156 56.17% 31,858,027 43.91 20

Colombia 49,065,615 62.26% 30,548,252 53.73 48

Ukraine 44,222,947 66.64% 29,470,000 67.52 23

Saudi Arabia 32,938,213 82.12% 27,048,861 90.24 76

Malaysia 31,624,264 80.14% 25,343,685 103.34 9

Morocco 35,739,580 61.76% 22,072,765 25.37 44

Taiwan 23,626,456 92.78% 21,920,626 163.85 7

Australia 24,450,561 86.54% 21,159,515 77.88 14

Venezuela 31,977,065 64.31% 20,564,451 17.9 77

Algeria 41,318,142 47.69% 19,704,622 6.78 67

Ethiopia 104,957,438 18.62% 19,543,075 12.39 55

Iraq 38,274,618 49.36% 18,892,351 29.88 77

Uzbekistan 31,910,641 52.31% 16,692,456 39.2 78

Myanmar 53,370,609 30.68% 16,374,103 22.75 50

Netherlands 17,035,938 93.20% 15,877,494 152.94 9

Peru 32,165,485 48.73% 15,674,241 51.81 33

Chile 18,054,726 82.33% 14,864,456 176.48 18

% world Averages weighted by Internet users

Above countries 90.15% 4,292,105,058 103.32 34

Above countries excl. China 69.37% 3,303,115,058 82.47 25

World 100.00% 4,761,334,541

© bobbriscoe.net Ltd, 2021 Version 03 11 of 13



TR-BB-2021-001 PI2 Parameters

Figure 6: Scatter-plot per country of average base RTT from users to CDNs and average fixed access
bandwidth. Only the 43 countries with the most Internet users are plotted, representing 90% of Internet
users. The top 10 are labelled as well as those at the extremes

References

[Beg19] Emir Beganović. Analysing Global CDN
Performance. Blog, RIPE Labs, August
2019. Online: https://labs.ripe.net/author/
emirb/analysing-global-cdn-performance/.

[CCYJ17] Neal Cardwell, Yuchung Cheng, Soheil Hassas
Yeganeh, and Van Jacobson. BBR Congestion
Control. Internet Draft draft-cardwell-iccrg-bbr-
congestion-control-00, October 2017. (Work in
Progress).

[DOC19] Data-Over-Cable Service Interface Specifications

DOCSIS® 3.1; MAC and Upper Layer Proto-
cols Interface Specification. Specification CM-SP-
MULPIv3.1-I17-190121, CableLabs, January 2019.

[DSBEW21] Koen De Schepper, Bob Briscoe (Ed.), and Greg
White. DualQ Coupled AQM for Low Latency,
Low Loss and Scalable Throughput (L4S). Inter-
net Draft draft-ietf-tsvwg-aqm-dualq-coupled-18,
Internet Engineering Task Force, October 2021.
(Work in Progress).

[dSBTB15] Koen de Schepper, Olga Bondarenko, Inton
Tsang, and Bob Briscoe. ‘Data Center
to the Home’: Ultra-Low Latency for All.
Technical report, RITE Project, June 2015.
http://riteproject.eu/publications/.

[DSBTB16] Koen De Schepper, Olga Bondarenko, Ing-Jyh
Tsang, and Bob Briscoe. PI2 : A Linearized AQM
for both Classic and Scalable TCP. In Proc. ACM
CoNEXT 2016, New York, NY, USA, December
2016. ACM.

[Jac88] Van Jacobson. Congestion Avoidance and Con-
trol. Proc. ACM SIGCOMM’88 Symposium,
Computer Communication Review, 18(4):314–
329, August 1988.

[JK88] Van Jacobson and Michael J. Karels. Congestion
Avoidance and Control. Technical report, Lau-
rence Berkeley Labs, November 1988. (a slightly

modified version of the original published at SIG-
COMM in Aug’88 [Jac88]).

[KKFR15] Chamil Kulatunga, Nicolas Kuhn, Gorry
Fairhurst, and David Ros. Tackling Bufferbloat
in capacity-limited networks. In 2015 European
Conference on Networks and Communications
(EuCNC), pages 381–385, 2015.

[LR20] Humberto La Roche. CDN Caching and Video
Streaming Performance. Blog, August 2020.

[MSJ+19] Ayush Mishra, Xiangpeng Sun, Atishya Jain,
Sameer Pande, Raj Joshi, and Ben Leong. The
Great Internet TCP Congestion Control Census.
Proc. ACM on Measurement and Analysis of
Computing Systems, 3(3), December 2019.

[Ook21] Ookla. Speedtest Global Index. http://www.
speedtest.net/global-index, April 2021.

[PPP+13] Rong Pan, Preethi Natarajan Chiara Piglione,
Mythili Prabhu, Vijay Subramanian, Fred Baker,
and Bill Ver Steeg. PIE: A Lightweight Con-
trol Scheme To Address the Bufferbloat Prob-
lem. In High Performance Switching and Routing
(HPSR’13). IEEE, 2013.

[RBB+15] Mohammad Rajiullah, Bob Briscoe, Anna Brun-
strom, Andreas Petlund, and Bengt Ahlgren.
What Use is Top Speed without Acceleration?.
Technical report, RITE Project, August 2015.
(Published within doctoral thesis “Towards a Low
Latency Internet: Understanding and Solutions”).

[RXH+18] I. Rhee, L. Xu, S. Ha, A. Zimmerman, L. Eg-
gert, and R. Scheffenegger. CUBIC for Fast
Long-Distance Networks. Request for Comments
RFC8312, RFC Editor, August 2018.

[Wik20] List of countries by number of Internet users.
Online: https://en.wikipedia.org/wiki/List_of_
countries_by_number_of_Internet_users, 2019–
2020.

12 of 13 Version 03 © bobbriscoe.net Ltd, 2021

https://labs.ripe.net/author/emirb/analysing-global-cdn-performance/
https://labs.ripe.net/author/emirb/analysing-global-cdn-performance/
http://www.speedtest.net/global-index
http://www.speedtest.net/global-index
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users
https://en.wikipedia.org/wiki/List_of_countries_by_number_of_Internet_users


PI2 Parameters TR-BB-2021-001

Document history

Version Date Author Details of change

00A 01-Jun-2021 Bob Briscoe First draft

01 02-Jun-2021 Bob Briscoe Changed Figure 5 to RTT under load. Numerous minor
corrections.

01A 04 Jun 2021 Bob Briscoe Minor corrections following review.

02 05 Jul 2021 Bob Briscoe Following review by Koen De Schepper, altered terminol-
ogy, clarified different RTTs, added more rationale and
added avg Reno qDelay appendix.

02A 19 Oct 2021 Bob Briscoe Fixed misconception: Linux CReno AI factor is 9/17, not
1 and Cubic aggressiveness is C=0.4, not 0.6. Added new
section on sawtooth positioning and reworked rest of paper
accordingly.

02B 21 Oct 2021 Bob Briscoe Fixed minor errors.

03 27 Oct 2021 Bob Briscoe Updated sawtooth positioning analysis, justified approxi-
mations in appendices, added small selection of empirical
plots, added acks.

© bobbriscoe.net Ltd, 2021 Version 03 13 of 13


	Introduction
	Terminology
	Scaling of Queue Variation
	Scaling of Q Variation with RTT
	Scaling of Queue Variation with Link Capacity
	Sawtooth Position
	Sawtooth Geometry

	Typical Base RTT
	Default target
	Acknowledgements
	Average Queue Over a Reno Sawtooth
	Average Queue Over a Cubic Sawtooth
	Scaling of AIMD Cycle Duration
	Typical User to CDN RTT
	References

