
Scaling TCP’s Congestion Window for Small Round Trip Times

Bob Briscoe∗

19 May 2015

Abstract

This memo explains that deploying active queue man-
agement (AQM) to counter bufferbloat will not pre-
vent TCP from overriding the AQM and building large
queues in a range of not uncommon scenarios. It is
solely a paper study. The prevalence of these scenarios
in practice will need to be established.

To keep its queue short, an AQM drops (or marks)

packets to make the TCP flow(s) traversing it reduce

their packet rate. Nearly all TCP implementations will

not run at less than two packets per round trip time

(RTT). 2pkt / RTT need not imply low bit-rate if the

RTT is small. For instance, it represents 2Mb/s over a

6ms round trip. When a few TCP flows share a link,

in certain scenarios, including regular broadband and

data centres, no matter how much the AQM signals to

the flows to keep the queue short, they will not obey,

because it is impossible for them to run below this floor.

The memo proposes the necessary modification to the

TCP standard.

1 The Problem

The capacity-seeking (aka. greedy) behaviour of
TCP and its derivatives has led to the need for
active queue management (AQM) which starts to
drop packets as the queue grows, even when it is
still quite short. Then the queue stays short, and
the rest of the buffer remains available to absorb
bursts.

Keeping down queuing delay, obviously drives down
the round trip time (RTT). For a certain number
of flows sharing a link, the packet rate of each will
stay the same if the RTT reduces. But a lower RTT
means less packets per RTT. Unfortunately, nearly
all TCP implementations cannot operate at less
than two packets per RTT (the standard [APB09]
prohibits it).

How common are these circumstances? Imag-
ine a quite unremarkable scenario in a residential

∗ietf@bobbriscoe.net, BT Research & Technology,
B54/77, Adastral Park, Martlesham Heath, Ipswich, IP5
3RE, UK

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1 2 5

1
0

2
2

4
6

1
0

0

2
1

5

4
6

4

1
,0

0
0

2
,1

5
4

4
,6

4
2

1
0
,0

0
0

2
1
,5

4
4

4
6
,4

1
6

RTT [s] log scale

Capacity [Mb/s] log scale

Window [pkt/RTT]

if capacity is shared by 10 flows

(1500B packets)

1000-1000000

1-1000

0.001-1

1E-06-0.001

Broadband

Data Centre

Figure 1: Window Size at Various Scales
Only the middle diagonal is significant for this study,

representing a window of 1 MSS. The same diagonal

would represent 2 MSS for 5 flows.

broadband setting where 12 equal flows all share a
40 Mb/s link with an Ethernet frame size of 1518 B,
so each sends at 40/12 = 3.3 Mb/s. That’s not so
slow. But if an AQM attempts to keep their round
trip time down to R = 6ms, they would have to
run at 40M/(12 ∗ 1518 ∗ 8) ∗ 6m = 1.64 pkt/RTT.
They cannot and will not do that.

A scenario with a shorter round trip time, a slower
link, more flows or larger packets would require
even less packets per round trip. In the develop-
ing world sub-packet windows are much more com-
mon [CISF11]. Nonetheless, taking an example sce-
nario of 10 flows sharing the bottleneck, Figure 1
illustrates how the developed world is definitely not
immune to the problem. The need for sub-single-
packet windows is probably not at all unusual in
both broadband and data centre scenarios.

TCP controls its rate using a window mechanism,
where the window, W is the number of segments
per round trip. The mechanism cannot work for
a window of less than two segments, and TCP’s
standard congestion avoidance algorithm [APB09]
stipulates a minimum window of 2*SMSS, where
SMSS is the sender’s maximum segment size (usu-
ally 1460 B). The 2 is intended to interwork with
the common delayed ACK mechanism that defers

Version 00D 1 of 5

mailto:ietf@bobbriscoe.net

TR-TUB8-2015-002 Scaling TCP’s cwnd below 1 MSS

an ACK until a second segment has arrived or the
timer has expired (default 40 ms in Linux).

Once TCP’s window is at this minimum, TCP no
longer slows down, no matter how much congestion
signalling the AQM emits. TCP effectively ignores
the increasingly insistent drops (or ECN marks)
from the AQM. Inside the algorithm it halves the
congestion window, but then rounds it back up to
the minimum of two. For non-ECN flows, this will
drive the AQM to make the queue longer, which
in turn will drop more packets. So the flows will
shuffle between periods waiting for timeouts and
periods going faster than average while others wait
for timeouts (see [Mor97]), but there will always be
a longer queue. ECN flows will just keep making
the queue longer until the RTT is big enough. In
the following, where we don’t need to distinguish
ECN and non-ECN, the term ‘signals’ will be used
for either drops or ECN marks.

As long as TCP effectively ignores congestion sig-
nals, queuing delay increases, the AQM emits even
more signals, TCP’s rounding-up effectively ig-
nores them, the queuing delay increases, and so
on. TCP is designed to reduce its window, not
only when congestion signals increase, but also as
RTT increases. So the queue will eventually sta-
bilise at some larger size than the AQM would
have liked (assuming there is sufficient buffer above
the AQM’s target queuing delay). Balance will be
reached when all the flows are sending TCP’s mini-
mum number of segments per round trip. Because,
above that, all the TCPs will reduce their window
in response to any additional signals, but below
that they won’t.

So, that’s good isn’t it?

No. The flows are indeed sharing the link (without
any losses in the case of ECN), they are clocking
out packets twice every round trip and everything is
stable. But to achieve this they have overridden the
AQM to build a standing queue. A better outcome
would be for all the TCPs to send out packets less
often than twice per round trip, which would keep
the queue at the level intended by the AQM.

Note that this problem is not the same as TCP’s
“Silly Window Syndrome”. Both problems do con-
cern a sub-SMSS window, but the present problem
concerns the congestion window, not the flow con-
trol window.

We thought that AQM was the solution to the
queuing delay caused by TCP’s capacity-seeking
behaviour. However, in these scenarios TCP will
trump AQM.

2 A Sub-MSS Window Mech-
anism for TCP

No amount of AQM twiddling can fix this. The
solution has to fix TCP. TCP needs to be able to
work internally with a fractional window instead of
rounding it up to 2 ∗M , where we use the symbol
M for SMSS.

The window mechanism is fundamentally a way to
send W bytes1 every RTT, R.

We want to extend the window mechanism if W <
M to send a packet of M bytes every M/W round
trips.

It is always wrong to send smaller packets more
often, because the constraint may be packet pro-
cessing, not bits. So we will not send smaller than
maximum sized segments unless the send queue is
insufficient. Therefore, more generally, if W < s
we want to send a packet of size s bytes every s/W
round trips, where s = min(M, snd q), and where
snd q is the amount of outstanding data waiting to
be sent.

sender rcvr

R

d

time

Figure 2: TCP’s Segment Timing for W < 1

Normally, TCP holds back from sending if W < s.
As illustrated in Figure 2, we need to modify this
so that, following receipt of an ACK, if W < s TCP
waits for time d, where:

d + R =
sR

W

d =
(s

W
− 1

)
R. (1)

Ironically, the sender has to insert a delay between
each packet to avoid delay in the queue. Indeed,
it is the same amount of delay. But it is better to
localize the delay at each sender, not remote in the
network, otherwise:

1Working in units of bytes not packets is necessary for
what follows

2 of 5 Version 00D

Scaling TCP’s cwnd below 1 MSS TR-TUB8-2015-002

Mutual interest: There is a strong possibility
that the remote queue is shared by other flows,
some of which are likely to be interactive;

Self-interest: Many modern apps (e.g. HTTP/2,
SPDY and interactive video) can adapt what
they send and how much they send based on
the local send queue, whereas it takes a round
trip to know the status of a remote network
queue;

The way to determine how best to implement the
above is to follow the approach of TCP Lami-
nar [Mat12]. That is to focusing solely on the part
that keeps TCP ‘clocking’ at a constant rate, and
treat the ups and downs that adjust that rate (con-
gestion control, flow control) and regulate ACKs
(delayed ACK) as separate.

TCP’s basic window clocking machinery normally
works as follows: when TCP sends s bytes, it decre-
ments W by s and when the sender receives an
acknowledgement for s bytes one RTT later, it in-
crements W by s.

This needs to be modified as follows: after TCP’s
congestion response following receipt of an acknowl-
edgement, if W < s, TCP must wait (s/W − 1)R,
which then entitles it to send a packet of size s
and decrement W by s. This makes W negative,
which is conceptually OK, but would require ma-
jor change across TCP. See later for possible alter-
native ways to implement this. However, for now
bear with the conceptual device of a negative win-
dow. Then the behaviour (as opposed to the im-
plementation) of the rest of TCP should not need
to change.

Specifically, unless other parts of TCP have inter-
vened in the meantime, TCP will receive the ac-
knowledgement for s bytes and increment the win-
dow by s. W should now be positive again, but still
insufficient to send a packet of size s. So TCP must
again wait (s/W − 1)R.

The congestion control parts of TCP’s machinery
will be independently increasing W every time an
ACK is received or reducing it every NACK. If con-
gestion of the link is relieved, as each packet is
ACKed, TCP will increase W and consequently re-
duce the wait d between packets. As W → s the
wait d→ 0. Once W ≥ s no wait will be necessary.
If instead the link remains congested, every time
a NACK is received, W will reduce (e.g. halve),
and the wait between packets will increase appro-
priately (e.g. approximately double).

The normal congestion responses of a set of TCP’s
with the above modification should work properly
with the AQM at a bottleneck. They would pace

the segments at less than one per round trip if nec-
essary. Then they will balance with the AQM at its
intended queuing delay, rather than bloating the
queue just so they can all run at 2 segments per
RTT.

This mechanism should be able to replace TCP’s
exponential back-off, as a more justifiable way to
keep a congested link just busy enough during con-
gestion. Every time TCP’s retransmission timer
expires, it will halve W , thus doubling the wait d
before sending the next retransmission. With no
response, W will get exponentially smaller and d
exponentially larger. But as soon as there is one
ACK, the window will grow so that a data packet
(or probably a retransmission) can be sent.

3 Potential Issues

Even if d is large relative to R, TCP will have to
use the last estimate of R because it will have no
better way to estimate R given all activity will have
stopped.

Modifying TCP implementations is unlikely to be
straightforward. Integer arithmetic will need to be
developed for Equation 1. A sub-MSS window has
been implemented in Linux before, in TCP Nice,
but the code is now quite old. Also many parts of
TCP are likely to have to be changed to implement
the concept of a negative window. It would not
be appropriate to store the amount of negativity
in a separate variable in order to limit side-effects,
because the whole point of the window variable is
to communicate side-effects to all the different parts
of the code.

If the type of the window variables were changed
from unsigned to signed, this would lose half of
the maximum window size. A better alternative
might be to increment up the meaning of cwnd by
one SMSS, and appropriately change all the places
where it is compared with zero or other constants,
such as SMSS. However, for widely understood code
like TCP, such a change could cause implementers
to get very confused.

TCP’s delayed ACK mechanism causes only ev-
ery n (default 2) segments arriving at the receiver
to elicit an ACK, unless more than the delayed
ACK timer (default 40 ms in Linux) elapses be-
tween packets. Assuming the receiver delays ACKs,
the above sub-MSS mechanism will result in all the
segments being sent at the correct average rate, but
in pairs. That is OK, but not ideal. The idea in
AccECN [BSK14] where the sender can ask the re-
ceiver to turn off delayed ACKs would be nice.

A priority would be to support a sub-MSS win-
dow in data centre TCP (DCTCP [AGM+10])

Version 00D 3 of 5

TR-TUB8-2015-002 Scaling TCP’s cwnd below 1 MSS

before it is deployed over the public Internet as
proposed [KWEB14, dSTBB14]. This is because
DCTCP can maintain an extremely shallow queue,
so it will more often need a window below one to
support this (we uncovered the present problem
while testing DCTCP over a broadband access—
more than a certain number of flows suddenly
started the queue growing).

4 Related Work

Morris [Mor97] found that much of the loss in the
Internet in 1997 was due to many TCP flows at
bottlenecks, causing an average window of less than
one segment, which actually appears as a shuffling
between some flows waiting for time-outs while oth-
ers consume much more than the equal share. As
a sign of the times, one proposed solution was to
add more buffer space although it was recognised
a more fundamental solution was really needed, for
which RED was suggested, although as this memo
points out, that would not have helped.

TCP Nice [VKD02] is intended for background
transport. It is a modification to TCP Vegas in
Linux to make it more sensitive to congestion and
includes support for less than one segment in the
congestion window. When the window is below 2
segments, it switches into a new mode and sends a
packet every 1/W round trips, which might be an
easier approach for implementation, but it might
not behave as continuously across the range of win-
dow values as the above proposal. TCP Nice ar-
bitrarily limits the minimum window size to 1/48.
The paper also reports on a simulation of Nice’s
interaction with the RED AQM.

Chen et al. [CISF11] investigates the behaviour of
TCP when the path can only support a window
of less than one segment, primarily interested in
oversubscribed low capacity links in the developing
world.

Komnios et al. [KSC14] find that LEDBAT per-
forms better than TCP in the regime with a win-
dow of less than one segment, but when there is
a mix of flows on the link, LEDBAT switches into
its TCP mode, so it needs to be more sophisticated
when it can do better by remaining in LEDBAT
mode.

Acknowledgements

Thanks to Koen de Schepper who noticed and artic-
ulated the problem, to Michael Welzl, John Heffner,
Joe Touch and Matt Mathis for explaining why the

minimum ssthresh in the TCP spec is 2∗SMSS, and
to Michael Welzl and Anna Brünstrom for helping
with the Related Work.

The author was part-funded by the European Com-
munity under its Seventh Framework Programme
through the Reducing Internet Transport Latency
(RITE) project (ICT-317700). The views expressed
are solely those of the author.

References

[AGM+10] Mohammad Alizadeh, Albert Greenberg,
David A. Maltz, Jitu Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Mu-
rari Sridharan. Data Center TCP (DCTCP).
Proc. ACM SIGCOMM’10, Computer Com-
munication Review, 40(4):63–74, October
2010.

[APB09] M. Allman, V. Paxson, and E. Blanton. TCP
Congestion Control. Request for Comments
5681, Internet Engineering Task Force, Septem-
ber 2009.

[BSK14] Bob Briscoe, Richard Scheffenegger, and Mirja
Kühlewind. More Accurate ECN Feedback in
TCP. Internet Draft draft-kuehlewind-tcpm-
accurate-ecn-03, Internet Engineering Task
Force, July 2014. (Work in Progress).

[CISF11] Jay Chen, Janardhan Iyengar, Lakshmi-
narayanan Subramanian, and Bryan Ford. TCP
Behavior in Sub-Packet Regimes. In Proc. SIG-
METRICS11, pages 157–158. ACM, June 2011.

[dSTBB14] Koen de Schepper, Inton Tsang, Olga Bon-
darenko, and Bob Briscoe. Data Center to
the Home. Presentation in IETF Proceedings,
URL: http://www.ietf.org/proceedings/92/

slides/slides-92-iccrg-5.pdf, March 2014.

[KSC14] I. Komnios, A. Sathiaseelan, and J. Crowcroft.
Ledbat performance in sub-packet regimes. In
Wireless On-demand Network Systems and
Services (WONS), 2014 11th Annual Confer-
ence on, pages 154–161, April 2014.

[KWEB14] M.Mirja Kühlewind, David P. Wagner, Juan
Manuel Reyes Espinosa, and Bob Briscoe. Us-
ing Data Center TCP (DCTCP) in the Internet.
In Proc. Third IEEE Workshop on Telecommu-
nications Standards: From Research to Stan-
dards, December 2014.

[Mat12] Matt Mathis. Laminar TCP and the case for
refactoring TCP congestion control. Internet
Draft draft-mathis-tcpm-tcp-laminar-01, Inter-
net Engineering Task Force, July 2012. (Work
in progress).

[Mor97] R. Morris. TCP Behavior with Many Flows. In
Proceedings of the 1997 International Confer-
ence on Network Protocols (ICNP ’97), ICNP
’97, pages 205–, Washington, DC, USA, 1997.
IEEE Computer Society.

[VKD02] Arun Venkataramani, Ravi Kokku, and Mike
Dahlin. TCP Nice: A Mechanism for Back-
ground Transfers. SIGOPS Oper. Syst. Rev.,
36(SI):329–343, December 2002.

4 of 5 Version 00D

http://www.ietf.org/proceedings/92/slides/slides-92-iccrg-5.pdf
http://www.ietf.org/proceedings/92/slides/slides-92-iccrg-5.pdf

Scaling TCP’s cwnd below 1 MSS TR-TUB8-2015-002

Document history

Version Date Author Details of change

00A 15 May 2015 Bob Briscoe First Draft

00B 15 May 2015 Bob Briscoe Added Abstract, Scenarios and Related Work

00C 15 May 2015 Bob Briscoe Included design approach and implementation issues.

00D 19 May 2015 Bob Briscoe Removed mistaken idea that 1∗SMSS would be easier than
< 1 ∗ SMSS.

Version 00D 5 of 5

	The Problem
	A Sub-MSS Window Mechanism for TCP
	Potential Issues
	Related Work
	References
	Document history

