
What Use is Top Speed without Acceleration?

Bob Briscoe
Simula Research Laboratory

Oslo, Norway
bob@simula.no

Mohammad Rajiullah
Karlstad University
Karlstad, Sweden

moharaji@kau.se

Anna Brunstrom
Karlstad University
Karlstad, Sweden

annabrun@kau.se
Andreas Petlund

Simula Research Laboratory
Oslo, Norway

apetlund@simula.no

Bengt Ahlgren
Swedish Institute of Computer

Science
Stockholm, Sweden
bengta@sics.se

ABSTRACT
This paper is a call to action. The aim of the paper is to fully
characterise the flow-start problem. This involves quantify-
ing the latency penalty of the start-up phase of typical In-
ternet flows through evaluating a model of the state-of-the-
art flow-start-up dynamics and characterising typical flow
lengths. We have analysed a decade of traces from an Inter-
net backbone as well as traces collected from a point much
closer to users to account for CDN traffic. This analysis
shows that an ever-growing proportion of typical user’s ses-
sions is becoming limited by flow-start limitations, not ca-
pacity. Moreover, according to our trace analysis, often in
most cases, access links are totally empty when a new flow
starts, hinting at the potential of a better flow-start to ex-
ploit the idle capacity. The paper further discusses the lack
of scalability of the known solutions that would be easiest to
deploy—those that only depend on unilateral deployment by
one party. This leaves only solutions that require coordinated
deployment. The paper avoids siding with any particular so-
lution, but identifies the critical deployment problems that
any solution will have to overcome.

1. INTRODUCTION
Internet transport protocols use congestion control [1] to

adapt to the available capacity in the path. A congestion
control has to be designed on the basis that each time a flow
starts the available capacity is unknown. Even a re-start after
idling cannot assume that the capacity or other traffic has
remained unchanged [2]. Path capacity changes rapidly when
the physical capacity changes or as other flows arrive and
depart, at least in scenarios with low numbers of flows at the
bottleneck. TCP senders universally use some variant of the
TCP slow-start algorithm [3,4], which sends an initial handful
of packets, waits for feedback, then doubles how much it
sends in each subsequent round as long as it has sensed no
losses in the feedback. The question of how aggressively
to probe for available capacity is not unique to TCP, but
TCP’s exponential slow-start (with various optimizations)

has become widely considered as an acceptable compromise
between acceleration and overshoot.

However, slow-start does not scale, because every dou-
bling of target flow rate takes one more round trip to reach.
Investment in bottleneck capacity can be used either to carry
more flows, bigger flows, or to make each flow faster. Most
individuals access the Internet through link capacity dedi-
cated to their device or to their household, which is often idle
when a new flow arrives (this paper quantifies this assertion,
and finds it is the majority case). Over the past 2–3 decades,
Internet access link capacities have consistently doubled ev-
ery 18–21 months according to four different sources [5]. But
such investment in access capacity can only be fully effec-
tive if individual flows can accelerate up to the increased top
speed and still have enough data left to take advantage of it.
Put the other way round, investment in access capacity gives
no performance improvement at all for flows smaller than a
certain threshold.

Unscalability of slow-start would not be a problem if all
transfer sizes were getting larger, but they are not. As we
continue to invest in greater link capacity, larger transfers be-
come feasible. But it does not follow that all the demand for
the smaller objects disappears—the range of feasible transfer
sizes merely widens. We will show that, as link capacities
increase, an ever-growing proportion of a typical user’s ses-
sions become limited by slow-start; “protocol-limited” rather
than “capacity-limited”. And, even for flows that are large
enough to exploit faster links, the amount of loss experienced
during overshoot increases. In the absence of any explicit
signalling, all data flows face the same dilemma, whether
using TCP or other transports. In the rest of this paper, we
shall call this the ‘flow-start’ problem. [6] identified this as
the main remaining open issue of Internet congestion control.
The longer we fail to solve this flow-start problem, investing
in capacity will make less and less difference to more and
more people.

This paper is a call to action. The aim is to characterise
the flow-start problem; to quantify how serious it is, to show
that it has recently started to become particularly serious, that

1

it is getting worse, that it will always get worse as long as
stop-gaps are favoured over concerted agreement on an endur-
ing solution, and finally to articulate the precise deployment
problem that any enduring solution has to solve.

We start in sections 2 and 3.1 with two analytical models: i)
a model of traffic flow arrivals; and ii) a model of the state-of-
the-art acceleration mechanism these flows use today (TCP
slow-start with various optimisations). Combining the two
models gives a metric for the under-utilisation of capacity, and
the effectiveness of upgrading this capacity. The eventual aim
is to be able to distil Internet traffic flows into a simple model
of all the flow-starts, and to further distil that down to one
metric measuring the effectiveness of capacity investment.

The rest of Sec. 3 quantifies how bad the flow-start prob-
lem has become by using the models to assess packet trace
data collected between 2002 and 2015. The paper then shifts
from characterising the problem to assessing solutions. Sec. 4
divides proposed solutions into those designed for ease of de-
ployment (host only) and more ambitious solutions that alter
the interface between host and network. Host-only solutions
have made slight improvements, but not sufficient to keep up
with the growing scale of the problem. On the other hand,
those solutions that face up to the scale of the problem have
not been deployed—because of the chicken and egg problem
of staging host and network deployments when there is no
benefit until both parts are in place.

The paper ends with a summary of more generally related
research in Sec. 5, followed by concluding remarks and an
outline of potential future work in Sec. 6.

2. SCALING MODEL
The following scaling model shows that capacity increases

can be used to absorb larger flows or more simultaneous flows,
but there is also an expectation that increases in capacity
should make individual flows faster. After Kelly [7] we
model the change in scale of traffic using three independent
scaling factors for:

a, the size (i.e. volume) of each flow;

b, the rate of a flow of constant size;

c, the number of simultaneous flows.

If the capacity growth factor is refereed to as x, then in order
to absorb the above three dimensions of traffic scaling, x
needs to be equal to a.b.c. Note that element a of capacity
growth absorbs any scaled-up volume of each flow without
changing its completion time while b is an additional speed-
up, or equivalently the speed-up that a flow of constant size
would experience. Increase factor c absorbs more flows while
keeping the link utilisation unchanged. Of course, any of
the factors a,b,c may take values less than one to represent
decreases.

For a given capacity growth factor x, the ideal change in
rate (let’s call it b∗) is x

a.c . However, this is only achievable
when flows are capacity-limited. In practice the change in

rate is often smaller if flows are protocol-limited. So, given
the rate actually grows by factor b, then b

b∗ measures the
effectiveness of a capacity upgrade.

Each factor in the scaling model is a statistical quantity,
with a mean and a distribution. In Sec. 3 we will use packet
trace data over the last twelve years to put numbers to these
factors. Nonetheless, the past is not always a good prediction
of the future. So it is useful to have a generic model to be able
to explore other possible ways traffic may scale in future.

3. QUANTIFYING THE PROBLEM
Sec. 3.1 presents a model of TCP slow-start that quanti-

fies how the benefit from link capacity upgrades reduces to
nothing for smaller flows. Sec. 3.2 illustrates how an ever
increasing proportion of Internet flows are limited by flow-
start, not by capacity, based on a longitudinal study of packet
traces from an Internet core and traces from an Internet access
link. Sec. 3.3 shows how different value-judgements can in-
fluence the significance of the flow-start problem, addressing
the question of whether we should count benefit per flow, per
byte or per something else.

3.1 Model of Slow-Start
To analyse the flow-start problem we model the average

transfer rate of a single TCP flow with a dedicated bottleneck
capacity. We assume that access links are more often empty
than full when a new flow starts, which we will later show to
often be true based on our measurements of real traffic. The
general approach is to find the number of round trips in which
slow-start only partially fills the bottleneck, before the round
in which either slow-start ends or the flow ends, if sooner.
Then any remaining packets will arrive at the bottleneck rate,
whether they are all sent in the next round while still in slow-
start phase or there are enough packets to progress into the
fast retransmit and congestion avoidance phases. Average
transfer rate rather than completion time is chosen as the
‘figure of merit’. Then, as explained above, for a capacity
increase x, the factor b by which the average rate grows
can be used to determine the effectiveness of the upgrade.
An alternative could have been to use completion time, but
average rate also has the advantage that it is meaningful for
different flow volumes where a bigger number represents
better performance. Besides, anyone can compare an average
flow rate directly with well-known bottleneck access link
rates. We define average rate as

Average rate = flow volume/completion time.

In order to quantify how inefficient slow-start is, we want
to ensure that we criticise the most aggressive variant of
slow-start. Therefore we use state of the art parameters for
slow-start, that is:

• Initial window of ten Ethernet-size segments [8], as
well as three for comparison;

• Base two exponential increase (i.e. doubling per round);

2

• A range of round trip times that are realistic for the
public Internet, with and without caching;

• No use of hybrid slow-start [4] (because ‘HyStart’ soft-
ens the aggressiveness of slow start, which led to it
becoming the default in Linux because it is believed
to help general performance, but it does not suit our
purposes here).

• No use of multiple parallel flows (because a larger ini-
tial window is equivalent), see Appendix B;

The model for the slow-start is derived in Appendix A.
For a wide range of sizes of each transfer (1 B to 1 GB),
Fig. 1 shows the average rate achieved over a whole transfer,
including the slow-start phase1, on a log-log scale for a few
scenarios.

Taking the second plot in the figure as an example (IW=10
segments, R=20 ms, X=80 Mb/s), it shows that unless the
transfer size is larger than around 1 MB, it hardly even starts
to exploit a dedicated 80 Mb/s link. A 1 MB transfer can
only average about 40 Mb/s, while a smaller 15 kB transfer
can only average about 3 Mb/s. For transfer sizes less than
500 kB, any capacity increase beyond about 80 Mb/s would
make no noticeable difference to average rate (illustrated
by comparing the X=80 Mb/s and the X=1 Gb/s plot in the
figure).

Furthermore, the last plot of Fig. 1 shows that the problem
is significantly worse if the round trip time is longer. For
an inter-continental round trip time that is ten times longer
(R=200 ms) only flows ten times larger (more than 10 MB)
can start to make use of 80Mb/s capacity.

One might think that the dependency between the capacity
and traffic volume is the other way round: as capacity grows
new applications emerge that exploit it by transferring larger
objects—“build it and they will come”. In the next section
we will see that the distribution of transfer sizes has included
larger flows as capacity has grown, but only a very slightly
larger proportion of all flows.

3.2 Longitudinal Study of Packet Traces
The scaling behaviour illustrated in Fig. 1 would not be a

problem if all Internet flows were getting larger (parameter
a in the scaling model in Sec. 2). Next, we show that while
increased capacity provides the possibility of larger trans-
fers, the demand for small transfers continues pretty much
unchanged.

To establish the proportion of traffic that has been limited
by flow-start rather than capacity we have performed a lon-
gitudinal study of Internet flow sizes based on Cooperative
Association for Internet Data Analysis (CAIDA) [10] packet
traces. We also process the traces to characterise the number
1But excluding the initial round of handshaking, i.e. optimistically
assuming the flow is re-starting without having to hand-shake, e.g. a
re-start after a long idle period or using the experimental Fast Open
enhancement to TCP [9] after an earlier connection between the
same client-server pair.

100 101 102 103 104 105 106 107 108 109
10−5

10−4

10−3

10−2

10−1

100

101

102

103

Flow size [B]

A
ve

.r
at

e
[M

b/
s]

IW 10, R 20ms,
X 1Gb/s
IW 10, R 20ms,
X 80Mb/s
IW 3, R 20ms,
X 80Mb/s

IW 10, R 20ms,
X 2Mb/s
IW 10, R 200ms,
X 80Mb/s

Figure 1: The problem: TCP has to limit the average trans-
fer rate of different size flows despite dedicated capacity X.
IW=initial window; R=round trip time.

100 101 102 103 104 105 106 107 108 109

Flow Size [B]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

200208
200301
200304
201201
201206
201212

(a) Whole CDF

100 101 102 103 104 105 106 107 108 109

Flow Size [B]

0.95

0.96

0.97

0.98

0.99

1.00

CD
F

200208
200301
200304
201201
201206
201212

(b) Tail of the CDF

Figure 2: Prevalence of flows of different sizes on the Internet,
based on Tier 1 traces.

of active flows that are present when a new flow starts in a
user’s access link. Finally, since content distribution network
(CDN) traffic is likely to be heavily under-represented in the
Tier 1 ISP (CAIDA) traces, we do the same analysis on a
trace collected at an access aggregation link through which
all the Internet traffic of each connected user has to pass.

3.2.1 Tier 1 Packet Traces

3

Tier 1 ISP packet traces were recorded by CAIDA’s data
collection monitors at two Equinix datacenters. Each data set
in 2012 was collected at these two monitors connected to bi-
directional backbone links of a Tier 1 ISP between Chicago
and Seattle, and San Jose and Los Angeles, respectively. Each
data set generally consists of twelve monthly samples, taken
at the same time of the day. Each monthly sample includes
separate traces for each backbone direction. The average size
of a monthly dataset varies between 100 and 350 GB. Earlier
data sets (2002–2003) were obtained from the ampath-oc12
passive monitor, which tapped two directions of an OC12c
link located in Miami, Florida and is no longer in use.

3.2.2 Flow Size Distribution
Fig. 2 shows the prevalence of flow sizes in the CAIDA

data sets over the decade, 2002-2012 on the same log-scale as
used in Fig. 1. As shown in Fig. 2a, the majority of the flows
are short2 and the distribution has hardly changed over time.
The prevalence of short flows is also consistent with earlier
studies [11–14]. Although large flows are rare in Fig. 2a, if
we zoom in on the tail of the flow size distribution, as shown
in Fig. 2b; the tail gets slightly longer over time, showing the
presence of even larger flows in recent years. Nevertheless,
the distribution of typical transfer sizes has hardly changed
over the decade. From the CAIDA data, over this decade the
annual growth of various statistical parameters of the flow
size distribution, a (defined in Sec. 2) is tabulated below,
showing that what little growth there is is mainly in the tail.

Flow size growth mean 50%-ile 90%-ile 99%-ile
factor, a [/yr] 1.13 1.06 1.02 1.10

Over the same period, according to the sources in [5],
bottleneck link capacities have grown by factor x≈ 1.54 pa or
×50–×100 over the decade3, compared to just ×3.4 growth
in mean flow size over the decade. This implies that it is
becoming critical to improve the effectiveness of flow-start
for small/medium flows because they clearly hold an enduring
place in the the way users and applications use the Internet.

This can be shown by comparing the distribution of flow
sizes in Fig. 2 with the slow-start model in Fig. 1. A 2 Mb/s
link-rate plot is included in Fig. 1 to show that capacity in-
creases up to 2 Mb/s (when broadband was first introduced)
was effective for a large range of the flow size distribution.
Increasing further from 2 Mb/s to 80 Mb/s is still effective,
but only for flow sizes above the 75th percentile (any larger
than about 3 kB). Further upgrades beyond about 80 Mb/s
only have any affect on flow sizes greater than 1 MB, which
is where the 1 Gb/s plot can be seen to start rising above the
80 Mb/s plot. That implies no benefit for about 96.6% of
flows (using the Dec-2012 flow size distribution).
2The step artefact at about 20 B in one plot is due to how the original
data was binned.
3Although we do not have data specifically for the US that would
be more comparable to the CAIDA data

At this point, it must be clarified that the number of smaller
flows is extremely large, so benefit for the remaining 0.4%
of flows greater than 1 MB still helps a very large number of
flows (and the largest proportion of bytes—see later).

Also, we must not forget that we have assumed the flow is
arriving at an empty link, which we shall see later is usually
but not always true. In the significant minority of cases when
a new flow joins n−1 others already using bottleneck capac-
ity X , it roughly4 translates to a similar scenario, but with
one flow arriving at empty capacity of X/n. For instance,
when a TCP flow joins 3 others sharing an 80 Mb/s bottle-
neck, it is roughly equivalent to arriving at an empty 20 Mb/s
bottleneck. If a 20 Mb/s plot were shown in Fig. 1, it would
peel away from the 1 Gb/s plot for flows larger than roughly
100 kB. Thus, multi-flow scenarios increase the range of ca-
pacity upgrades that will be effective. However, continued
capacity upgrades still ultimately only benefit in fewer and
fewer realistic scenarios.

In general, the flow-start problem does not play a role for
flows that can fit in the initial congestion window [3] and
therefore complete1 in one RTT. The problem also hardly
affects very large connections, where the initial delay due to
an inefficient flow-start becomes insignificant compared to
the overall completion time.

However, the flow-start problem hits the range of popular
flow sizes between these two extremes. For example, b∗

is 40 for a capacity increase from 2 to 80 Mb/s. However,
for a flow size of 202 kB, R=20 ms and IW=10, based on
the corresponding average rates in the figure, the actual rate
increase, b is only 18Mb/s

2Mb/s or 9. So the effectiveness of this

capacity upgrade for this case is only 9
40 or 22.5%. The

effectiveness reduces even further for larger upgrades. For
example, a capacity upgrade from 2 Mb/s to 1 Gb/s is only 2%
effective for this flow size. The effectiveness for larger flows
would be greater, but according to the Dec-2012 CAIDA data,
that was only about 1.5% of flows.

Comparing the second and third plots shows that increasing
the initial window (IW) from 3 to 10 segments (as recently
proposed and deployed by Google) makes a reasonable differ-
ence for flows between 4.5 kB and 100 kB (85 to 97.5 %-ile
according to the Dec-2012 CAIDA data). The difference
looks small because of the log-scale, but making a range of
popular flow sizes twice as fast is a significant contribution.
Whatever, for larger flows the difference becomes increas-
ingly less significant. The merit of further increases to IW is
discussed later.

3.2.3 Competing Flows
To circumvent the flow-start problem, applications some-

times open multiple flows together [15]. These flows are
correlated and with respect to their capacity demand they

4The precise model is different; existing TCP flows make about half
the capacity available, then the new flow competes with the others
to fill it, usually remaining in slow-start for a few rounds while they
increase more slowly in congestion avoidance.

4

should be considered as a single flow. However, it is difficult
to find the correlation of a group of packets that are seen
temporally together in the trace. These packets cannot be
considered as a single flow if the relevant flows were not
started together. Nevertheless, the number of active flows
gives a notion of link occupancy or utilization. For example,
if there are n active flows in a link, n gives an indication of
the link occupancy for a new flow coming to this link.

To this end, we identify the number of active flows from
each IP address from the CAIDA datasets. We look per IP in
order to approximate each bottleneck access link. This is not
always true, but it is a useful working assumption because
access capacity is often partitioned per IP, and we are solely
interested in how many flows are competing, irrespective of
how many users there might be sharing the bottleneck (e.g.
behind a NAT).

In our analysis, an active flow means that at least a single
packet5 has been exchanged in the last q milliseconds which
we call the ‘max quiet time’. Our choice of q comes from
rather coarse assumptions of the maximum RTT (we tried
with 100 and 300 ms). Fig. 3 shows the CDF of the estimated
number of active flows in an access bottleneck when a new
flow starts, and how it differs between the years. The dif-
ference between Fig’s 3a & 3b is due to the fact that when
we assume a higher value of the max quiet time, q = 300 ms,
sparse connections with packet inter-arrival times between
100–300 ms become considered as active connections.

According to the graphs in Fig. 3, most of the time when
a flow starts the access links is empty. This is not surprising
given that, for capacity planning purposes, ISPs expect an
average access link to be utilised even during the peak hour
for only about 1-5% of the time.

Compared to 2002, in the 2012 data it is a little more likely
that a flow arrives at an empty link, but also the likelihood
of meeting hundreds of flows is greater. When interpreting
data on competing flows, it should be borne in mind that most
flows consist of a few or just one packet (see Sec. 3.2.2). So,
when there appear to be hundreds of active flows it is likely
that few (if any) are elephants. The mean number of flows
encountered by a new flow in the 2012 data is either of (10.5,
30.4) for the two cases q = (100,300)ms, with respective
annual growth factors, c≈ (1.09,1.12), where c is defined in
Sec. 2. A possible explanation is that use of parallel flows
by apps has become more common but, whenever a user is
active, any larger flows complete sooner (because the link
rate is so much faster), which means the link will be more
likely to be free again before the next burst of activity.

This analysis counts flows by their port identifiers. There-
fore it cannot tell the difference between a) flows opened by
the same application in parallel (to circumvent the flow-start
problem) and b) flows that happen to be active at the same
time. Nonetheless, the analysis has some value as a compari-
son over the years. However, this analysis has a more serious
limitation, because we cannot assume that for any user all the

5Excluding FIN and RST packets.

flows go through the CAIDA monitors. In the next section,
we use traces that were collected from a point much closer to
users.

0 100 101 102 103

IP wise number of active connections

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

200208
201212

(a) Max quiet time, q = 100 ms

0 100 101 102 103

IP wise number of active connections

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

200208
201212

(b) Max quiet time, q = 300 ms

Figure 3: Number of active flows seen when a new flow starts
based on Tier 1 data sets.

3.2.4 Access-link Packet Traces
In today’s Internet, when apps request resources, they are

often redirected to the set of CDN caches closest to them
instead of the requested servers. CDNs were largely deployed
during the decade of our longitudinal study. The involvement
of CDNs makes a longitudinal study difficult, because we
only have historic data under repeatable conditions from the
Internet exchange point that CAIDA uses, which may no
longer show traffic representative of that seen by end-users.

In this section, we use traces collected from a vantage point
where we can see all the Internet traffic that users see—on
the user-side of the CDNs. The trace was collected from
a 1 Gb/s link between two local aggregation switches in an
ISP network in Sweden. The traffic was collected from mid-
December 2014 to early January 2015. The link aggregates
more than 400 ADSL or VDSL households, with 60 Mbit/s
as the highest subscription speed. In addition there are some
tens of FTTX business accesses the fastest being 100 Mb/s
and one 3G base station. Due to space limitation we only
show results from traces taken on two of the days.

Fig. 4 shows the CDF of flow sizes for the user traces super-
imposed over the (greyed out) CAIDA traces from Sec. 3.2.2.
It can be seen that the distribution of flow sizes is very simi-
lar to the CAIDA traces but, now that we have included all

5

100 101 102 103 104 105 106 107 108 109

Flow Size [B]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

200208(caida)
200301(caida)
200304(caida)
201201(caida)
201206(caida)
201212(caida)
user trace 1
user trace 2

(a) Whole CDF

100 101 102 103 104 105 106 107 108 109

Flow Size [B]

0.95

0.96

0.97

0.98

0.99

1.00

CD
F

200208(caida)
200301(caida)
200304(caida)
201201(caida)
201206(caida)
201212(caida)
user trace 1
user trace 2

(b) Tail of the CDF

Figure 4: CDF of flow sizes for both Tier 1 and access link
traces

the traffic that users see, there is a discernible shift towards
larger flows, although it is still dominated by small flows.
Similar to our observations for CAIDA traffic in the CDFs
of Fig. 2a, the large majority of flows they experience the
flow-start problem most acutely, i.e. they would accrue little
or no benefit from further capacity investment.

Fig. 5a and 5b show the number of flows that are active
when a new flow starts. The same approach as in Section 3.2.3
is adopted, where a flow is defined as active until none of
its packets have been seen for max quiet time, q. Traces 1
& 2 show a typical weekday and weekend day during the
collection period, each representing all IPs on that day. It
can be seen that about 20-35% of flows arrive at an empty
link—no longer a majority of flows now that we can see all
the traffic a user sees. Interestinglythe tail is shorter than the
CAIDA data sets. That is, in the access link data, it is nearly
unheard of for a flow to arrive when there are over 100 flows
in the bottleneck.

As we have already mentioned, some apps open multiple
TCP connections in parallel in an attempt to mitigate the
flow-start problem. For instance, at the time our access link

0 100 101 102 103

IP wise number of active connections

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

user trace 1

user trace 2

(a) Distribution of active flows in user’s bottle-
neck (q = 100 ms)

0 100 101 102 103

IP wise number of active connections

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

user trace 1

user trace 2

(b) Distribution of active flows in user’s bottle-
neck (q = 300 ms)

Figure 5: Number of active flows seen when a new flow starts
based on access link data sets.

traces were collected, the most popular browsers opened 6-13
connections per hostname and 10–17 max total.6

When parallel flows arrive at an idle link, our flow analysis
records the first as competing with 0 flows, the second with
1, the third with 2, and so on. However, we should be charac-
terising the underlying flow-start behaviour of applications
and users. So, in terms of behaviour, parallel flows should all
really be considered as one single larger aggregate, which we
shall term a train. This would shift our flow-size distribution
in Fig. 4 to the right (towards larger trains), and it would shift
the CDFs in Fig. 5 to the left, reducing the number of active
trains present when each new train arrives.

SPDY, which has been standardized as HTTP/2 aims to use
a single TCP connection rather than multiple parallel ones.
We will discuss the implications for flow-start behaviour,
when we survey solutions in Sec. 4.

3.3 The Significance of User Value
In the following we will argue that the significance of the

flow-start problem largely depends on how users value flows
of various sizes, and illustrate the problem of judging value
with an example concerning the latency of video interaction.

3.3.1 Weighting by Value
The analysis in Sec. 3.1 tells us that the limitation from

flow-start mostly affects short flows and subsequently Sec. 3.2

6Using the Wayback Machine to view browserscope at the
time: http://web.archive.org/web/20141214012212/http:
//www.browserscope.org/?category=network

6

suggests that most of the flows are short. Without saying
explicitly, so far we have deferred the question of whether all
flows are of equal importance. However, the significance of
the flow-start limitation depends on how users value flows of
different sizes.

Some might consider that, rather than each flow being of
equal importance, each byte in each flow is of equal impor-
tance. This thinking comes from capacity planning and ca-
pacity scheduling, where network engineers and researchers
are mainly interested in large flows representing applications
like file downloading or video streaming. However value
should not be confused with capacity usage.

Wischik argues that users particularly value the bytes in
short flows that represent interactive applications like short
messaging service (SMS), web browsing etc. [16]. A mar-
ket study (unfortunately not published) has noted that, when
users are expected to pay for certain applications, willing-
ness to pay per byte ranges over more than six orders of
magnitude, from messaging (SMS, IM) at the high end to
software & video downloads at the low end, with interactive
voice (telephony), Web, email, interactive video and music
downloads in between. Very roughly, the more bytes there
are in a session, the less per byte users are willing to pay. For
instance, (some!) users are willing to pay about $0.20 for an
SMS (rough average size: 100 B). At that price, a 5 GB HD
movie download would cost $10M! Whereas, realistically,
some people might pay about $5. It must be noted that the
value of transferring bytes is not the same as the value of
the application as a whole, which is what the above numbers
represent. However, the two are closely related.

These examples show that all bytes cannot be of equal
importance (a video download is not worth $10M). But also
all flows are not of equal importance (a 20c SMS is not as
valuable as a $5 video). However, the latter is only 1 order
of magnitude out, whereas the former is out by more than
six orders. A more generic approach would be to weight
each flow as a function of the size, n, of the flow. In this
paper, we do not presume to determine the ‘best’ function.
We merely propose the weighting technique as a way of
precisely formulating the question. A market analysis could
then answer the question.

Of course, size is not the only factor that determines the
value of a flow (the type of application is obviously impor-
tant), however we will progress on the assumption that there
is some approximate relationship between flow size and flow
value.

Ideally, each flow could be weighted by the likely value
users would gain from improving the completion time of
flows of that size. The weighting could be expressed as a
function of flow size, so that the CDF of flow sizes could
be recast as a CDF of weighted flow sizes. This recast CDF
would then be compared with the slow-start model in Fig. 1
in the same way as we did in Sec. 3.2.2 with the original flow
size CDF .

100 101 102 103 104 105 106 107 108 109 1010

Flow size [B]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1
n

1

n
logn

n

1√
n ∗logn

Figure 6: Value per flow analysis based on different weighting
approaches.

In the following we will see, given different weighting
approaches, how the significance of the flow-start problem
changes depending on the chosen value-judgement.

Fig. 6 shows how different weighting functions affect the
significance of flows of different sizes. For illustration, the
201212 CAIDA dataset has been used. For example, if the
value per flow is proportional to the flow size, n, then the
CDF of the proportion of value in flows up to each size would
be the same as a CDF of the number of bytes in flows up to
each size (see the graph labelled ‘n’ in the figure). Under this
assumption, the CDF is still rising healthily for flow sizes
up to 109 B so, referring back to Fig. 1, capacity upgrades
beyond 1 Gb/s would become valuable, because most of the
value is in the relatively few large flows. All the smaller flows
would not see any performance gain from these capacity
upgrades. However, the chosen value judgement dictates that
the value of doing anything about this is as small as the flows
are, i.e. insignificant.

In contrast, if the value per flow is independent of flow
size, then the CDF of value (see graph labelled ‘1’) would
be no different to the CDF of number of flows (as originally
shown in Figure 2a). In this case, users value small flows as
much as large, so most of the value is concentrated where
large numbers of small flows cause the CDF to rise steeply
(below about 105 B). Then, referring again to Fig. 1, capacity
upgrades beyond about 80 Mb/s are of little value, because
only a few large flows benefit. This is the same scenario as
already described in Sec. 3.2.2.

The figure also shows how other weighting functions or
value-judgements can change the distribution of value be-
tween flows of different sizes. There is no implication that
any of these functions are particularly appropriate. They are
merely intended to show a range of ways in which value can
be focused more or less strongly on either end of the flow
size distribution.

Nonetheless, in the SMS vs. video discussion above, it was
suggested that a function somewhere between that labelled ‘1’
and that labelled ‘n’ might be appropriate, with ‘1’ seeming

7

Format Resolution Bytes Packets Download time Minimum bandwidth required
to transfer the I-frame in slow-start

DVD 720 × 576 62,208 43 150 ms 3 Mb/s
720p 1280 × 720 138,240 95 200 ms 4 Mb/s
1080p 1920 × 1080 311,040 212 250 ms 10 Mb/s
2160p 3840 × 2160 1,244,160 851 350 ms 38 Mb/s
4320p 7680 × 4320 4,976,640 3404 450 ms 150 Mb/s

Table 1: Download time for the 1st I-frame of streamed video using traditional slow-start on a link with unlimited bandwidth
and RTT of 50 ms. The example RTT was chosen based on common user-CDN response times [17].

the better approximation. Therefore the function labelled
‘1/(
√

n logn)’ may represent a more typical value judgement
than the others.

3.3.2 Video Interaction Latency
The detrimental effects of the slow-start problem do not

only affect short flows. There are cases where massively
greedy flows also depend on a fast speed-up to provide the
QoE that users require. One example is HTTP segment
streaming that is responsible for an increasing amount of
the traffic on the Internet today [18]. When a control action
is performed for the video, like start, pause or forward, a full
frame of video must be sent to restart the video playout. The
delay experienced by the user is negligible for low-resolution
video, but as the resolution increases, the flow-start limitation
comes into play whenever most of the I-frame transfer hap-
pens during slow-start. It rises to a level where the delay will
easily be detected and experienced as annoying, even with a
perfect link.

Table 1 shows the time it will take to download the first
frame of video as the resolution increases7. The link speed
is defined as unlimited with no packet loss, so the slow-
start/RTT relation is the only limitation to the start-up la-
tency. We can see that for recent Ultra High Definition TV
(UHDTV) resolutions, the delay for starting the playout will
be 450ms, a clearly noticeable delay for users. There are
other emerging technologies that require much more data
to be streamed over the Internet, like high-quality 3D mesh
streaming. In such scenarios, the start-up delay will be even
bigger.

The bandwidth column in Table 1 shows the minimum
bandwidth required to transfer the whole I-frame in slow-
start. Many of today’s connections already provide such
bandwidths. For example, the obtainable bandwidth when us-
ing very high rate digital subscriber line (VDSL2) in Fiber to
the node (FTTN) is well over 100 Mbps [19]. LTE-advanced
(LTE-A) developed by 3GPP provides a speed of 300 Mbps
for cellular connection [20]. Besides, the flow sizes in Table 1
fall over the 90th percentiles in the CDFs of both Figure 2
and Figure 4. However, since most of the video streaming
are CDN traffic today [21], they are probably missing in core

7Since the I-frame needs to be transmitted in its entirety, the size
is calculated based on the compression rate of 1:20 that is found
in MPEG video. We have defined each pixel to, uncompressed, be
represented by 24 bits. Thus, we use 1.2 bits per pixel to calculate
the I-frame size in the table. 1500 B packet size is assumed.

Internet traces like the traces from CAIDA, but could po-
tentially exist in the access link traces described in section
3.2.4.

4. SOLUTIONS AND THEIR DEPLOYMENT
PROBLEMS

The aim of this paper is not to present a solution to the
flow-start problem; it is to thoroughly investigate the nature of
the problem. That includes understanding why there appear
to be no solutions that are scalable and feasible to deploy.
Scalable means ideally no additional start-up latency as flow-
rates increase. Feasible to deploy means a solution should
ideally give immediate benefit to a ‘first mover’, which we
shall call a “unilaterally deployable solution”. For example,
no benefit until both host and network have been upgraded
is not unilaterally deployable; rather it is a chicken-and-egg
stalemate.

Sec. 4.1 outlines the various types of unilaterally deploy-
able solutions. Although they all aim to make today’s slow-
start incrementally better, none address the enduring scalabil-
ity challenge posed by the flow-start problem. Then Sec. 4.2
introduces proposals that do address the scalability challenge,
but are not unilaterally deployable.

4.1 Limited Scope for Unilaterally Deployable
Solutions

4.1.1 Caching
The idea behind all sorts of caching technology available

in the Internet is to reduces the RTT by holding resources
closer to clients. Caching trades off the performance benefit
against both the size and the placement of the cache [22, 23].
For instance Kroeger et al [24] found an average of only
22%–26% reduction in latency with web caching, even for
cache hit ratios of 47%–52%. Moreover, caching is not par-
ticularly suitable for a range of services dealing with real
time/ dynamic content (e.g. gaming, interactive video), re-
mote control operations or financial updates. Any legacy
content caching or CDN is not suitable to cache dynamic
contents [25]. This, caching gives a useful once-off reduction
in RTT for some scenarios, but every doubling of link rate
still needs one more RTT, albeit a reduced RTT.

4.1.2 Larger Initial Window (IW)
In 1998, Katz et al [26] pointed out that, with a small IW,

the long probing period not only causes poor bandwidth util-

8

isation but also increases latency. Balakrishnan et al. [15]
further mentioned that as a consequence of slow probing in
slow-start, several applications tend to start multiple connec-
tions to probe faster (see the next section for why parallel
flows and increased IW are equivalent). In 2010, Dukkipati
et al [8] conducted a large-scale experiment to show that
it would be safe to increase TCP’s initial window from its
previous typical value of 3 to 10. Subsequently, there were
a number of experiments finding cases where this would be
detrimental, e.g. to heavily loaded low rate links. And there
have been some experiments proposing combining IW10
with pacing would mitigate these problems [27]. Nonethe-
less, IW10 has now been documented by the IETF as an
experimental RFC [28]

Clearly, given TCP slow-start doubles the window every
round, starting from a higher number removes the need for
some of the early rounds. For example, starting from 3 will
double to 6 after 1 round, having sent 3+6=9 segments. So
starting from 12 (which would have been the next step after
6) is the same as cutting out the first round (also adding
3 segments). We have already characterised the practical
benefit that increased IW offers (at the end of Sec.3.2.2 using
Fig. 1), because it allows a larger proportion of small flows
to fit into the initial window.

Nonetheless, as each doubling of flow-rate with capacity
adds a round to TCP slow-start, we cannot keep increasing
IW to remove this round again, because this would lead to
larger and larger sequences of segments being injected into
the Internet before any feedback control had been established.
Therefore, although increasing IW makes a useful gain, it is
not an enduring solution to the slow-start scaling problem.

4.1.3 Multiple Parallel Flows or a Large Initial Win-
dow

Developers of applications have tended to patch over the
flow-start problem by opening multiple parallel flows. For in-
stance, the Firefox Web browser opens 6 parallel connections
for each domain8 and up to 17 for Web pages that contain
components from several domains (a common practice). Per-
haps surprisingly, parallel flows to the same host provide
exactly the same speed-up as starting with a larger IW, but
with the overhead of opening all the extra flows. The total
window across all flows still only doubles in the rounds after
the first. For example, if four parallel flows each increase
their windows in the sequence 3,6,12, . . ., the total window
across them all will start higher, but still double each round:
4×3,4×6,4×12 . . .= 12,24,48

Allman [29] made this point by grouping multiple parallel
flows into a single flow to investigate the cumulative effect
of a larger initial window. Like our work, he had to use an
arbitrary resolution time to group parallel start times (1 s in
his case).

Using parallel flows is feasible for modest speed-up of
small flows, however, to keep up with capacity increases,

8http://www.browserscope.org/?category=network

the number of parallel flows would have to grow more than
exponentially over time—the number of flows has to scale
faster than capacity growth, which itself increases exponen-
tially over the years [5]. This will quickly become infeasible,
particularly as larger and larger flows become constrained
by flow-start rather than capacity. For instance, over a 20 ms
path, one 1MB flow can achieve an average rate of 70 Mb/s.
To double its average rate requires 15 flows, but to exploit
four times the capacity would require 58 parallel flows9.

Interestingly, attempts are in progress to reduce sharding
of Web sessions into multiple parallel flows through stan-
dards/protocols. Some efforts are being made to move in
that direction, for instance through standardizing SPDY as
HTTP/2 [?, ?]. Most attention has been on being able to
coordinate all the flow control within one TCP connection.
However, it will be interesting to see whether the popularity
of this initiative is harmed by the performance of just a single
TCP slow-start.

In summary, increasing beyond the numbers of multiple
flows already in use will have limited additional benefit, un-
less stupidly large numbers of flows are used, which would
introduce considerable other problems (e.g. flow-state mem-
ory exhaustion in servers and NATs, as well as the multiple
initial windows or equivalently a single larger initial window
overflowing buffers on slower lines).

4.1.4 Faster Exponential
It may seem that a flow could get up to speed faster by

more than doubling its rate in each round. However, in the
last decade researchers at the leading edge of high-speed net-
working (e.g. for transferring large data sets in astronomy or
physics) have found that even rate doubling leads to tremen-
dous overshoot problems as link capacities grow [4, 30]. So
far, attempts to detect overshoot early using delay measure-
ments (see below) have produced mixed results, with worse
performance as well as better even when just doubling.

More than doubling during flow-start would create the
need to size buffers larger than one bandwidth-delay product,
which already introduces delay problems for shorter flows
and real-time applications.

4.1.5 Using Queuing Delay Measurements
Paced Start [31] monitors the queuing delay from the

incoming ACKs and paces the packets sent in subsequent
rounds. This avoids TCP’s overshoot, but it takes even longer
than TCP’s slow-start to reach the available capacity. Swift-
start [32] uses the packet-pair technique [33] to determine the
initial estimate of available bandwidth , however, the paper
does not discuss how good the estimation needs to be to be
useful. The packet-pair technique for accurate bandwidth esti-
mation at the beginning of a TCP connection has been widely
criticised for giving unreliable results [34]. Later a more
sophisticated bandwidth estimation algorithm called RAPID

9The formula for how many flows would be needed to achieve
different speed-ups is derived in Appendix B.

9

was proposed [35]. RAPID is based on PathChirp [36]. In
RAPID, each packet transmission is precisely timed, which
produces multiple sending rates in a single RTT. Under ideal
conditions, RAPID can probe for or adapt to a large change
in available bandwidth within one to four RTTs. However,
precise timing of packet transmission has always been a great
challenge for implementers [37].

In general, the precision of queuing delay measurements
reduces as link rates increase, because the time in the queue
decreases relative to the round trip time, making measure-
ments more susceptible to noise. Therefore it is not believed
that these techniques alone are a good basis for solving the
long-term scaling problem for flow-starts.

4.1.6 Other Solutions
Liu et al. [38] investigated what the impact would be if

every flow simply tried to send all its data paced out over
the first round trip time (termed Jump Start). The authors
monitored current Internet flows and found that only about
7.4% of them comprise more than the three packets that
a sender would send immediately anyway under the then
standard behaviour. The paper is inconclusive on whether the
edges of the Internet would cope with the very high loss rates
that this 7.4% of flows would cause (because they represent a
very much larger proportion of the bytes on the Internet).

The congestion manager framework [39, 40] use state shar-
ing at the sender to know the available capacity in the network.
Although joint congestion management can allow a new flow
to quickly find a suitable sending rate, it is only applicable
when multiple flows share a common bottleneck, so it is not
a general solution to problems of scale.

4.2 Promising Solutions with Deployment Chal-
lenges

This section briefly surveys the landscape of solutions
where deployment would be more involved. Solutions fall
into the following categories:

• new in-band signalling for packets that choose to use it,
but without changing the format of packet headers, e.g:
Anti-ECN [41], VCP [42];

• new in-band per-packet signalling for all traffic using a
new shim header, e.g. RCP [43], XCP [44];

• new out-of-band per-flow signalling for flows that choose
to use it, e.g. Quick-Start [45];

• Solutions that rely on the presence of preferential dis-
card or priority queuing in the network, in order to
send at a high initial rate into a low priority class, e.g.
RC3 [46].

Proposals such as [41, 42, 47] share the idea of starting to
ECN-mark at a threshold set at some fraction of the link rate.
They all require a decision on what fraction to use, but there
is no natural ‘best’ setting, so it is unlikely that one standard

will prevail. Therefore these approaches don’t really solve
the problem, they just move it.

Approaches like RCP [43], XCP [44], Quick-Start [45]
and RC3 [46], in one way or another, involve end-systems
asking network components to tell them whether it is safe to
be more aggressive than slow-start. The main problem this
raises is how the end-system can know whether sufficient
network components along the path speak the new protocol,
particularly whether the bottleneck does. This would not be a
problem in green-field networks or isolated private networks
under the control of a single administrator, e.g. a data center
or an enterprise LAN surrounded by proxies. However, other-
wise, this partial network deployment problem is the critical
barrier to deployment.

This survey of existing solutions forces us to confront
the conclusions that we seem to have reached the scaling
limit of unilaterally deployable solutions, so we need to face
the prospect of changing the host-network interface of the
Internet. However that will be an industry co-ordination
problem of epic proportions [6].

5. WORK RELATED TO CHARACTERIZ-
ING THE PROBLEM

Several existing works characterized the limitations of
TCP’s slow-start algorithm, including many of the works
covered already in Sec. 4 that also propose solutions.

A large body of work exists that characterizes Internet
traffic [11–14]. These works mainly investigated several
characteristics of a flow such as size, rate, duration and bursti-
ness. Similar to our work, protocol efficiency of TCP has
been investigated in [48, 49] for mobile networks. Their TCP
modeling is mainly based on their measurements of loss and
throughput in different mobile networks.

As well as studies on scalability of TCP’s slow-start phase,
the standard TCP congestion avoidance phase has also been
shown to be unscalable [50–52], especially in high speed wide
area networks. In steady state, with a loss rate p, standard
TCP’s average congestion window is proportional to 1√

p ,
which makes low loss rates very low and the loss recovery
time extremely slow with a high bandwidth-delay product.
Some of the scalable algorithms proposed in the literature are
Scalable TCP [51] and Relentless Congestion Control [50]
that try to give constant recovery time between losses by
providing an average congestion window proportional to 1

p .

6. CONCLUSIONS
This paper has attempted to quantify the size of the prob-

lem where acceleration is not keeping pace with increasing
link-speeds, which we term the flow-start problem. We have
shown that flow sizes are growing slowly relative to link
capacities. Because each doubling of capacity requires an
additional round trip delay to reach top speed, more and more
flows are finishing before they reach full speed. In other
words average flow-rates are becoming protocol-limited, not
capacity-limited.

10

We have also shown that when an application starts a new
data transfer, the bottleneck link is as likely as not to be
empty. This implies the flow-start problem is particularly
acute, because capacity increases are often not being used for
multiple flows simultaneously.

The paper has been intended as a call to action. It has
surveyed the status of solutions to the flow-start problem
and found that they are either unambitious in order to be
deployable, or ambitious but probably undeployable. We ask
the research community to focus on what will be necessary
to deploy an ambitious solution that will properly solve this
scaling problem. Clearly incremental solutions have their
place, but the research community needs to face the question
of how to co-ordinate an industry into adopting an enduring
solution to this scaling problem.

In future work, we intend to build consensus on extending
the current network/host interface in order to establish the
generic information flow (in a precise and timely manner)
from the network to the transport layer. We hope this will
become the foundation on which scalable solutions to the
flow-start problem can be built. Given the constraints set by
the existing IP protocol, we believe the updated interface may
have to rely on some form of encoding of the ECN field as
the information channel. This encoding will have to squeeze
an extra signalling channel into the 2-bit ECN field, without
interfering with the existing use of the ECN field by AQM
algorithms.

There is also further work to do to fully quantify and char-
acterize the problem. We intend to build a tool to extract
information about trains of packets that applications send be-
tween times when they become application-limited, whether
within one flow or across multiple parallel flows. We also
hope that the access link data we have collected can form the
start of a new longitudinal study.

7. ACKNOWLEDGMENTS
This work was funded by the European Community under

its Seventh Framework Programme through the Reducing
Internet Transport Latency (RITE) project (ICT-317700). The
views expressed are solely those of the author(s). Raffaello
Secchi reviewed the slow-start model. Koen De Schepper
gave useful comments on a draft of the paper. Data was
extracted from the CAIDA traces using tool-tracetool written
by Olga Bondarenko.

APPENDIX
A. TCP AVERAGE RATE MODEL

This is a model of the average rate of a single TCP flow
in dedicated bottleneck capacity, defined using the following
independent variables:

Link capacity, X [b/s]

Round trip time, R [s]

Initial window, i [pkt]

Packet size, S [B] or s = 8S [b]

Flow size, F [B].

Flow size, f = F/S [pkt]

Bandwidth-delay product, W = XR/s [pkt].

The general approach is to find the number n of round
trips in which slow-start only partially fills the bottleneck,
before the round in which either slow-start ends or the flow
ends, if sooner. Then any remaining packets will arrive at the
bottleneck rate, whether they are all sent in the next round
while still in slow-start phase or there are enough to progress
into the fast retransmit and congestion avoidance phases. In
the latter case, the number of retransmissions is added to the
number of packets to be forwarded before completion. One
round must be added between the receiver’s request and the
start of the response.10 Then completion time T between
the client’s request and it receiving the last data consists of:

T = (n+1)R+(m+M)s/X ,

The analysis below finds the values of n,m & M,

Round index, n [integer]

Remainder, m is the remaining packets of the flow that all
leave the bottleneck at rate X

Retransmissions, M due to losses during the overshoot at
the end of slow-start.

We define the number of packets in slow-start as fs. Index
u [real number] and the final window w [pkt] are only used
to derive formulae during slow-start, outside which they are
invalid:

n−1

∑
j=0

i2 j < fs ≤
n

∑
j=0

i2 j

i(2n−1)< fs ≤ i(2(n+1)−1)
n≥ lg(fs/i+1)−1
n = dlg(fs/i+1)e−1;

The critical flow size, fc is defined as the number of packets
that can be sent until buffer overflow ends slow-start, and the
critical round as the real number uc. The buffer is assumed

10Any handshaking rounds are excluded by the assumption that
either the flow is re-starting after idle or using TCP fast open after
an earlier connection between the same hosts.

11

perfectly sized for the flow, at 1BDP =W . Therefore at the
critical flow size, the critical window,

wc = 2W

= i2uc if 2W ≥ i

when fc = i(2(uc+1)−1)
= 2i2uc − i

= 4W − i if 2W ≥ i;
fc = 2W if 2W < i;

fs = min(f , max
(
2W, (4W − i)

)
;

The number of packets, e, in partially empty rounds of slow-
start is the number of packets in n rounds,

e = i(2n−1)
m = f − e

M = min
(
max(i,2W), max(0,(m−2W))

)
.

Explanation of the last formula for M: The buffer always has
time to empty the packets sent in the the round before the
round in which overflow occurs (if it occurs). The number
of packets dropped is the number of packets not constrained
by slow-start m less the 2 BDP of packets that the link can
forward or buffer, but limited by the number that will ever be
sent in one round during SS or CA, which is also 2W (or the
initial window i if it is larger, so it can overflow the buffer on
its own).

B. PARALLEL SLOW-STARTS
If a source opens m parallel flows all using the same slow-

start with initial window i, it only gives equivalent perfor-
mance to one flow in slow-start using a larger initial window
mi (but without all the overhead of the extra flows). The total
window across all flows still only doubles in the rounds after
the first.

The increase in bit-rate from using m-times larger packets
is also equivalent to using an m-times larger initial window
or m parallel flows (but without so much packet overhead).

Opening parallel flows (or equivalently increasing IW or
packet size) only offers a modest increase in average rate. Put
the other way round, to achieve a decent change in rate or
speed-up ratio b requires a stupidly large number of parallel
flows m.

The following analysis proves this by approximating from
the model of slow-start in A on condition that f � i, where
f is the flow-size in packets. The notation xm or Tm means
the average rate or completion time for m parallel flows (or
equivalently IW=mi or m times larger packets).

Tm ≈ lg(f/mi);

b =
xm

x1

=
T1

Tm

≈ lg(f/i)
lg(f/mi)

≈ lg(f/i)
lg(f/i)− lgm

lgm≈ (1−1/b) lg(f/i)

m≈ 2
(
(1−1/b) lg(f/i)

)
.

8. REFERENCES
[1] V. Jacobson, “Congestion avoidance and control,” ACM

SIGCOMM Computer Communication Review, vol. 25,
no. 1, pp. 157–187, Jan. 1995.

[2] J. Heidemann, “Performance Interactions Between
P-HTTP and TCP Implementations,” ACM SIGCOMM
Computer Communication Review, vol. 27, no. 2, pp.
65–73, Apr. 1997. [Online]. Available:
http://doi.acm.org/10.1145/263876.263886

[3] M. Allman, V. Paxson, and E. Blanton, “Tcp
congestion control,” IETF, RFC 5681, 2009.

[4] S. Ha and I. Rhee, “Hybrid slow start for
high-bandwidth and long-distance networks,” in
Proceedings of International Workshop on Protocols
for Future, Large-scale & Diverse Network Transports,
Manchester, UK, Mar. 2008.

[5] G. Kim, “Bandwidth Growth: Nearly What One Would
Expect from Moore’s Law,” Online:
http://ipcarrier.blogspot.co.uk/2014/02/
bandwidth-growth-nearly-what-one-would.html, Feb.
2014.

[6] D. Papadimitriou, M. Welzl, M. Scharf, and B. Briscoe,
“Open research issues in Internet congestion control,”
IETF, RFC 6077, Feb. 2011.

[7] F. P. Kelly, “Models for a self-managed internet,”
Philosophical Transactions of the Royal Society, vol.
358, no. 1773, pp. 2335–2348, Aug. 2000.

[8] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert,
A. Agarwal, A. Jain, and N. Sutin, “An argument for
increasing TCP’s initial congestion window,” ACM
SIGCOMM Computer Communication Review, vol. 40,
pp. 27–33, Jul. 2010.

[9] Y. Cheng, R. Sivasankar, and A. Jain, “TCP Fast Open,”
IETF, RFC 7413, Dec. 2014.

[10] C. for Applied Internet Data Analysis (CAIDA),
“University of california, san diego supercomputer,”
http://www.caida.org, accessed: 2016-06-05.

[11] N. Brownlee and k. claffy, “Internet stream size
distributions,” in Proceedings of the 2002 ACM
SIGMETRICS International Conference on

12

Measurement and Modeling of Computer Systems, ser.
SIGMETRICS ’02. New York, NY, USA: ACM,
2002, pp. 282–283. [Online]. Available:
http://doi.acm.org/10.1145/511334.511381

[12] K. Lan and J. Heidemann, “A measurement study of
correlations of Internet flow characteristics,” Computer
Networks, vol. 50, no. 1, pp. 46–62, Jan. 2006.

[13] S. Molnar and Z. Moczar, “Three-dimensional
characterization of Internet flows,” in Proceedings of
IEEE International Conference on Communications.
Kyoto, Japan: IEEE, Jun. 2011, pp. 1–6.

[14] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck,
and W. Willinger, “TCP revisited: a fresh look at TCP
in the wild,” in Proceedings of ACM SIGCOMM
Conference on Internet Measurement. Chicago,
Illinois, USA: ACM, Nov. 2009, pp. 76–89.

[15] H. Balakrishnan, H. S. Rahul, and S. Seshan, “An
integrated congestion management architecture for
internet hosts,” in Proceedings of ACM SIGCOMM,
vol. 29, no. 4. ACM, 1999, pp. 175–187.

[16] D. Wischik, “Short messages,” Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 366, no. 1872,
pp. 1941–1953, Jun. 2008.

[17] Cedexis, “Cedexis CDN response time report.”
http://www.cedexis.com/reports/#?report=
cdn response time&country=US&date=2016-06-16,
accessed: 2016-06-17.

[18] T. Kupka, C. Griwodz, P. Halvorsen, D. Johansen, and
T. Hovden, “Analysis of a real-world http segment
streaming case,” in Proceedings of the 11th European
Conference on Interactive TV and Video. New York,
NY, USA: ACM, 2013, pp. 75–84.

[19] V. Oksman, H. Schenk, A. Clausen, J. M. Cioffi,
M. Mohseni, G. Ginis, C. Nuzman, J. Maes, M. Peeters,
K. Fisher, and P. e. Eriksson, “The ITU-T’s new
G.vector standard proliferates 100 mb/s DSL,” IEEE
Communications Magazine, vol. 48, no. 10, pp.
140–148, Oct. 2010.

[20] A. Technologies, “Introducing LTE-Advanced,” http://
cp.literature.agilent.com/litweb/pdf/5990-6706EN.pdf,
accessed: 2016-06-05.

[21] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar,
I. Stoica, and H. Zhang, “A case for a coordinated
internet video control plane,” in Proceedings of ACM
SIGCOMM. New York, NY, USA: ACM, Aug. 2012,
pp. 359–370.

[22] B. Bjurling and P. Kreuger, “Performance of cache
placement policies,” in 10th Swedish National
Computer Networking Workshop, SNCNW, Västerås,
Sweden, Jun. 2014.

[23] I. Marsh, “Elastic network resources: controlled
caching,” in 10th Swedish National Computer
Networking Workshop, SNCNW, Västerås, Sweden, Jun.
2014.

[24] T. M. Kroeger and D. D. E. Long, “Exploring the
bounds of web latency reduction from caching and
prefetching,” in Proceedings of the USENIX
Symposium on Internet Technologies and Systems on
USENIX Symposium on Internet Technologies and
Systems. Anaheim, CA, USA: USENIX Association,
Jan. 1997, pp. 13–22.

[25] J. Ravi, Z. Yu, and W. Shi, “A survey on dynamic web
content generation and delivery techniques,” Journal of
Network and Computer Applications, vol. 32, no. 5, pp.
943–960, Sep. 2009.

[26] R. H. Katz and V. N. Padmanabhan, “TCP fast start: A
technique for speeding up web transfers,” in
Proceedings of IEEE Globecom Internet
Mini-Conference. Sydney, Australia: IEEE, Nov.
1998.

[27] R. Sallantin, C. Baudoin, E. Chaput, F. Arnal,
E. Dubois, and A.-L. Beylot, “Initial spreading: a fast
start-up TCP mechanism,” in Proceedings of IEEE
Conference on Local Computer Networks. Sydney,
Australia: IEEE, Oct. 2013, pp. 492–499.

[28] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis,
“Increasing TCP’s Initial Window,” RFC Editor, RFC
6928, Apr. 2013. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6928.txt

[29] M. Allman, “Comments on bufferbloat,” ACM
SIGCOMM Computer Communication Review, vol. 43,
no. 1, pp. 30–37, Jan. 2012.

[30] A. Antony, J. Blom, C. Laat, and J. Lee, “Exploring
practical limitations of TCP over transatlantic
networks,” Future Generation Computing System,
vol. 21, no. 4, pp. 489–499, 2005.

[31] N. Hu and P. Steenkiste, “Improving TCP startup
performance using active measurements: algorithm and
evaluation,” in Proceedings of IEEE International
Conference on Network Protocols. Atlanta, Georgia,
USA: IEEE, Nov. 2003, pp. 107–118.

[32] C. Partridge, D. Rockwell, M. Allman, R. Krishnan,
and J. Sterbenz, “A swifter start for TCP,” BBN
Technologies, Cambridge, MA, BBN Technical Report,
Tech. Rep., 2002.

[33] S. Keshav, “A control-theoretic approach to flow
control,” ACM SIGCOMM Computer Communication
Review, vol. 25, no. 1, pp. 188–201, 1995.

[34] R. Prasad, C. Dovrolis, M. Murray, and K. Claffy,
“Bandwidth estimation: metrics, measurement
techniques, and tools,” IEEE Network, vol. 17, no. 6,
pp. 27–35, 2003.

[35] V. Konda and J. Kaur, “RAPID: Shrinking the
congestion-control timescale,” in Proceedings of IEEE
Conference on Computer Communications. Rio de
Janeiro, Brazil: IEEE, Apr. 2009, pp. 1–9.

[36] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and
L. Cottrell, “Pathchirp: Efficient available bandwidth
estimation for network paths,” in Proceedings of

13

International Conference on Passive and Active
Network Measurement. San Diego, CA, USA:
Springer-verlag, Apr. 2003.

[37] M. Kühlewind and B. Briscoe, “Chirping for
congestion control-implementation feasibility,” in
Proceedings of International Workshop on Protocols
for Future, Large-scale & Diverse Network Transports,
Lancaster, PA, USA, Nov. 2010.

[38] D. Liu, M. Allman, K. Fall, and L. Wang, “Congestion
control without a startup phase,” in Proceedings of
International Workshop on Protocols for Future,
Large-scale & Diverse Network Transports,
Los-Angeles, CA, USA, Feb. 2007, pp. 61–66.

[39] J. Touch, “TCP control block interdependence,” IETF,
RFC 2140, Apr. 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2140.txt

[40] H. Balakrishnan and S. Seshan, “The congestion
manager,” IETF, RFC 3124, Jun. 2001. [Online].
Available: http://www.ietf.org/rfc/rfc3124.txt

[41] S. S. Kunniyur, “AntiECN marking: A marking scheme
for high bandwidth delay connections,” in Proceedings
of IEEE International Conference on Communications,
vol. 1. Anchorage, Alaska, USA: IEEE, May 2003,
pp. 647–651.

[42] Y. Xia, L. Subramanian, I. Stoica, and
S. Kalyanaraman, “One more bit is enough,” ACM
SIGCOMM Computer Communication Review, vol. 35,
no. 4, pp. 37–48, 2005.

[43] N. Dukkipati, M. Kobayashi, R. Zhang-Shen, and
N. McKeown, “Processor sharing flows in the Internet,”
in Proceedings of International Workshop on QoS.
Passau, Germany: Springer-verlag, Jun. 2005, pp.
271–285.

[44] D. Katabi, “Decoupling congestion control from the
bandwidth allocation policy and its application to high
bandwidth-delay product networks,” Ph.D. dissertation,
MIT, Mar. 2003.

[45] S. Floyd, M. Allman, A. Jain, and P. Sarolahti,
“Quick-Start for TCP and IP,” IETF, RFC 4782, Jan.
2007, (Status: Experimental).

[46] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker,
“Recursively cautious congestion control,” in
Proceedings of USENIX Symposium on Networked
Systems Design and Implementation. Philadelphia,
PA, USA: USENIX, Jun. 2014, pp. 373–385.

[47] P. Eardley, “Metering and marking behaviour of
PCN-nodes,” IETF, RFC 5670, Nov. 2009.

[48] J. Garcia, S. Alfredsson, and A. Brunstrom, “A
measurement based study of TCP protocol efficiency in
cellular networks,” in Proceedings of International
Symposium on Modeling and Optimization in Mobile,
Ad Hoc, and Wireless Networks. Hammamet, Tunisia:
IEEE, May 2014, pp. 131–136.

[49] K. Liu and J. Y. Lee, “Impact of TCP protocol
efficiency on mobile network capacity loss,” in

Proceedings of International Symposium on Modeling
& Optimization in Mobile, Ad Hoc & Wireless
Networks. Tsukuba Science City, Japan: IEEE, 2013,
pp. 1–6.

[50] M. Mathis, “Relentless congestion control,” in
Proceedings of International Workshop on Protocols
for Future, Large-scale & Diverse Network Transports,
Akihabara, Tokyo, Japan, May 2009.

[51] T. Kelly, “Scalable TCP: improving performance in
highspeed wide area networks,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 2, pp.
83–91, 2003.

[52] S. Floyd, “HighSpeed TCP for large congestion
windows,” IETF, RFC 3649, 2003.

14

