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ABSTRACT
We present a framework for resource control in CDMA net-
works carrying elastic traffic, considering both the uplink
and the downlink direction. The framework is based on
microeconomics and congestion pricing, and seeks to ex-
ploit the joint control of the transmission rate and the sig-
nal quality in order to achieve efficient utilization of net-
work resources, in a distributed and decentralized manner.
An important feature of the framework is that it incorpo-
rates both the congestion for shared resources in wireless
and wired networks, and the cost of battery power at mo-
bile hosts. We prove that for elastic traffic, where users
value only their average throughput, the user’s net utility
maximization problem can be decomposed into two simpler
problems: one involving the selection of the optimal sig-
nal quality, and one involving the selection of the optimal
transmission rate. Based on this result, the selection of sig-
nal quality can be performed as done today using outer loop
power control, while rate adaptation can be integrated with
rate adaptation at the transport layer.
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1. INTRODUCTION
Procedures for efficient control and management of wire-

less network resources are becoming increasingly important.
This is due to two factors: First, compared to fixed net-
works, there is a limited ability for increasing the capacity
of mobile wireless networks. Second, emerging multimedia
services and applications will increase the demand for band-
width in wireless networks. Congestion pricing has been
identified as a flexible framework for efficient and robust
resource control in wired networks; e.g., see [8, 9, 2]. In
this paper we investigate the application of microeconomic
modelling and congestion pricing in Code Division Multiple
Access (CDMA) wireless networks. Although our approach
is generally applicable to CDMA-based systems, including
systems utilizing a combination of code and time-division
scheduling, we focus our discussion on Wideband CDMA.

WCDMA has emerged as the most widely adopted third
generation (3G) air interface technology [6]. WCDMA is
based on Direct Sequence CDMA (DS-CDMA), a spread
spectrum technology where data bits are spread over the
entire spectrum used for transmission, and unique digital
codes are used to separate the signals from different mobiles;
such an approach enables simpler statistical multiplexing,
without the need for complex time or frequency scheduling.
WCDMA supports variable bit rate transmission with the
use of variable spreading factors and multiple codes; the
former determines how much a data bit is spread in time.
Finally, all the cells in a WCDMA network use the same
frequency spectrum; this feature is behind the soft-capacity
property of WCDMA networks, which results in the graceful
degradation of performance as the load increases.

The goal of this paper is to present and investigate a new
framework for resource control in CDMA networks, based
on microeconomics and congestion pricing. The framework
builds on results for resource usage, in both the uplink and
the downlink, and seeks to exploit the joint control of the
transmission rate and signal quality, the latter given by the
bit-energy-to-noise-density ratio, in order to achieve eco-
nomically efficient utilization of network resources, in a dis-
tributed and decentralized manner. An important feature
of the framework is that it incorporates the congestion for
shared resources in both wireless and wired networks, as
well as the cost of battery power at the mobile hosts; hence,
the framework can be the basis for the integration of re-
source control mechanisms in wireless and wired networks.
We prove that for elastic traffic, where users value only
their average throughput, the user’s net utility maximiza-
tion problem can be decomposed into two simpler problems:



one involving the selection of the optimal signal quality, and
one involving the selection of the optimal transmission rate.
Based on this result, the selection of signal quality can be
performed as done today using outer loop power control,
while rate adaptation can be integrated with rate adapta-
tion at the transport layer.

Our work differs from other works, which we briefly dis-
cuss in Section 6, in one or more of the following points:
First, our framework incorporates the congestion for both
wireless and wired resources, in addition to the cost of bat-
tery power at mobile hosts. Second, our work considers the
particular resource constraints in the uplink and downlink
direction, identifying the differences in the resulting mod-
els. Third, in the uplink our approach does not differentiate
mobile users based on their location. Finally, our work con-
siders the joint optimization of the transmission rate and
the signal quality, in order to achieve efficient resource uti-
lization.

The paper is organized as follows. In Section 2 we summa-
rize results concerning resource usage in CDMA networks.
In Section 3 we present a framework, based on microeco-
nomics and congestion pricing, for resource control in CDMA
networks carrying elastic traffic. We begin with a simple
model for the uplink and the downlink, which we then ex-
tend. In Section 4 we discuss the application of the above
framework, identifying a number of practical issues. In Sec-
tion 5 we present and discuss numerical investigations high-
lighting features of the proposed approach, including the dif-
ference of resource control in the uplink and in the downlink.
In Section 6 we present a brief overview of related work, and
in Section 7 we conclude the paper, identifying a number of
related research issues we are currently investigating.

2. RESOURCE USAGE IN CDMA
Consider a single CDMA cell. Let W be the chip rate,

which is fixed and equal to 3.84 Mcps for WCDMA. The bit-
energy-to-noise-density ratio, Eb/N0, at a receiver (either
mobile host or base station) is given by [3, 22]

(

Eb

N0

)

i

=
W

ri

gipi

Ii + ηi

, (1)

where ri is the transmission rate, pi is the transmission
power, gi is the path gain between the base station and mo-
bile i, Ii is the power of the interference, and ηi is the power
of the background noise. The ratio W/ri is the spreading
factor or processing gain for mobile i. Due to the errors in
the wireless network, the actual throughput (rate of success-
ful data delivery) will be smaller than ri.

The value of the bit-energy-to-noise-density ratio (Eb/N0)i

corresponds to the signal quality, since it determines the
bit error rate, BER [3, 22]. Under the realistic assumption
of additive white Gaussian noise, BER is a non-decreasing
function of Eb/N0, which depends on the multipath charac-
teristics, and the modulation and forward error correction
(FEC) algorithms. Let γi be the target bit-energy-to-noise-
density ratio required to achieve a particular BER, or equiv-
alently a particular frame error rate. This target is given to
fast closed-loop power control, which adjusts the transmis-
sion power in order to achieve it. If we assume perfect power
control, then (Eb/N0)i = γi.

When a sender does not send data continuously, the aver-
age Eb/N0 requirements will be met, if the right hand-side of
(1) is multiplied by the percentage of time the sender is ‘on’,

actually transmitting data; this percentage, called activity
factor, is 0.67 for voice.

2.1 Resource Usage in the Uplink
In the uplink, the interference Ii for mobile i is the sum

of the power of the signals received by the base station from
all other mobile hosts, i.e., Ii =

∑

j 6=i
gjpj . Moreover, we

can assume that the background noise at the base station
is the same for all mobiles, i.e., ηi = η. If γi is the target
bit-energy-to-noise-density ratio, then under perfect power
control (Eb/N0)i = γi, and (1) becomes

γi =
W

ri

gipi
∑

j 6=i
gjpj + η

. (2)

Solving the set of equations given by (2) for each mobile i,
we get [22, 16]

gipi =
ηαUL

i

1 −∑
j
αUL

j

, (3)

where the load factor αUL

i is given by

αUL

i =
1

(

W
riγi

+ 1
) . (4)

Note that the power levels given by the set of equations (3)
for i ∈ I, where I is the set of mobiles, are the minimum
such that the target bit-energy-to-noise-density ratios {γi}
are met. Since the power pi can take only positive values,
from (3) we get

∑

i

αUL

i < 1 . (5)

The last equation illustrates that the uplink is interference-
limited : Even when they have no power constraints, mobile
hosts cannot increase their power without bound, due to the
increased interference they would cause to the other mobiles.
If (5) is violated, then the target {γi} cannot be met for all
mobiles.

Equation (5) suggests that αUL

i is a measure of the re-
source usage, or the effective usage, of a mobile host i in
the uplink direction. From Equation (4), we conclude that
resource usage in the uplink of CDMA networks is an in-
creasing function of the product of two parameters, which
can be controlled independently : the transmission rate ri

and the signal quality, expressed in terms of the target bit-
energy-to-noise-density ratio γi.

If each mobile uses a small portion of the wireless resource,
which is the case when there is a large number of mobile
users, then we have W

riγi
� 1, hence αUL

i ≈ riγi

W
and the

resource constraint given by Equation (5) can be approxi-
mated by

∑

i

riγi < W . (6)

The above results assumed that there are no constraints
on a mobile’s maximum transmission power. They can be
extended to include such constraints [16]. Moreover, the
interference from neighboring cells can be taken into account
by considering the intercell interference coefficient, which
gives the ratio of the interference from neighboring cells over
the intracell interference [3].



2.2 Resource Usage in the Downlink
In the downlink, the interference for mobile i is Ii =

θigi

∑

j 6=i
pj , where θi represents the orthogonality of the

codes used in the downlink. If γi is the target signal quality
for mobile i, and assuming as above that we have perfect
power control, then (1) becomes

γi =
W

ri

gipi

θigi

∑

j 6=i
pj + ηi

. (7)

The orthogonality factor θi depends on multipath effects,
hence can be different for different mobile hosts. Typical
values fall in the range [0.1, 0.6], see [6, p. 163].

In the downlink, unlike the uplink, there is a limit on
the total transmission power1, say p̄ , hence the downlink is
power-limited. The corresponding resource constraint is

∑

i

pi ≤ p̄ . (8)

The last equation suggests that the transmission power from
the base station characterizes resource usage in the downlink
direction.

3. RESOURCE CONTROL BASED ON CON-
GESTION PRICING

In this section we first propose a utility function that is
appropriate for elastic traffic in wireless networks; utility
functions are widely used for capturing user and application
requirements, and give the level of satisfaction for a given
level of service. Then, based on the results for resource
usage of the previous section, we present and investigate
congestion pricing models for the uplink and the downlink
in CDMA networks.

We consider the case of elastic (best-effort) traffic, where
users value only the average throughput of successful data
transmission. This throughput is the product of the trans-
mission rate and the probability of successful packet trans-
mission. The latter is a function of the bit error rate BER,
which as discussed in Section 2 is a function of the target
bit-energy-to-noise-density ratio γ. Hence, the probability
of successful packet transmission can be written as Ps(γ), in
which case the average throughput is rPs(γ) [13, 4]. Thus,
the utility for elastic traffic where users value only their av-
erage throughput has the form

U (rPs(γ)) .

If the mobile user does not have minimum rate require-
ments, then his utility is typically concave. On the other
hand, if the user has minimum rate requirements, equiva-
lently maximum delay requirements, then his utility has a
sigmoid shape.

Let c(ri, γi, pi) be the charge incurred by user i with rate
ri, target bit-energy-to-noise-density ratio γi, and transmis-
sion power pi. The user’s net utility maximization problem
has the following general form (for simplicity, we assume
that all users have the same packet success probability):

maximize Ui (riPs(γi)) − c(ri, γi, pi) (9)

over ri ≥ 0, γi ≥ 0 ,

1p̄ refers to the total power the base station can transmit
minus the power used for the downlink control channels.

where the variables ri, γi, pi are related through Equation (2)
or (7), for the uplink or the downlink direction respectively.
The charge c(ri, γi, pi) can include both the congestion charge
for shared resources in the wireless network and, as we dis-
cuss in Section 3.2, the congestion charge for resources in
the wired network and the cost of battery power at the mo-
bile host. Specific formulations for the uplink and down-
link, based on the results of the previous section regarding
resource usage in each direction, will be discussed in the
following subsections.

The optimization in (9) involves two parameters: the trans-
mission rate ri and the target bit-energy-to-noise-density ra-
tio γi. An important result that we prove in Section 3.1 for
the uplink, but which also holds for more general forms of
the charge function c(·), is that the user’s net utility maxi-
mization problem can be decomposed into two subproblems:
one involving the selection of the optimal γ∗, which depends
only on the packet success probability Ps(γ), and one involv-
ing the selection of the optimal rate r∗

i , which depends on
the user’s utility and charge.

3.1 Congestion Pricing for the Uplink
In this section we consider the uplink, and first assume

there is a large number of mobiles, each using a small portion
of the wireless resource. Note, however, that the results for
this simple case also hold for the more general case. The
wireless resource constraint is given by (6)

∑

i

riγi < W .

To provide the right incentives for efficient use of network re-
sources, user i’s charge should be proportion to his resource
usage, which is given by riγi. Hence, in the uplink the user
optimization problem (9) becomes

maximize Ui (riPs(γi)) − λriγi (10)

over ri ≥ 0, γi ≥ 0 ,

where λ is the shadow price for resource riγi.
In the above model, prices are independent of the mobile’s

position. This is because the uplink is interference-limited,
and interference depends on the received power at the base
station. In this respect our approach differs from the work of
[4, 17, 21], where charges depend on the transmitted power;
such a dependence results in mobile users that are far from
the base station to incur a higher charge, for the same rate
and signal quality, compared to users close to the base sta-
tion. On the other hand, as we discuss in Section 3.3, in
the downlink a mobile’s position influences the charge, since
resource usage in this case is determined by the transmitted
power from the base station.

3.1.1 Properties of the optimal solution
An important property which greatly simplifies the appli-

cation of (10) is that the optimal γ∗
i of the target bit-energy-

to-noise-density ratio is independent of both the price λ and
the user’s utility. This allows the decoupling of the two
problems of selecting the optimal γ∗

i and the optimal trans-
mission rate r∗i . This property is stated and proved in the
following proposition.2

2We include only the proof for the first Proposition. The
other proofs can be found in [18].



Proposition 1. Let Ui(xi) and Ps(γi) be continuously
differentiable functions of the throughput xi = riPs(γi) and
the target bit-energy-to-noise-density ratio γi, respectively.
Also assume that U ′

i(xi) > 0 for all xi ≥ 0. If there exists
r∗i > 0 and γ∗

i > 0 that achieve the maximum of (10), then
γ∗

i is independent of the price λ and the utility, and satisfies

Ps(γ
∗
i ) = P ′

s(γ
∗
i )γ∗

i . (11)

Proof. At the optimal, the partial derivatives of (10)
with respect to ri and γi are zero, hence

ϑUi(riPs(γ
∗
i ))

ϑri

= λγ∗
i ⇒

U ′
i(x

∗
i )

ϑ(riPs(γ
∗
i ))

ϑri

= λγ∗
i ⇒

U ′
i(x

∗
i )Ps(γ

∗
i ) = λγ∗

i (12)

and

ϑUi(r
∗
i Ps(γi))

ϑγi

= λr∗i ⇒

U ′
i(x

∗
i )

ϑ(r∗i Ps(γi))

ϑγi

= λr∗i
r∗

i >0⇒

U ′
i(x

∗
i )P

′
s(γ

∗
i ) = λ (13)

From (12) and (13) we get (11).

Proposition 1 can be proved for the more general case
where the charge has the form c(rγ) or c(rPs(γ)). Interest-
ingly, the extensions to the basic model given by (10) that
we discuss in Section 3.2, and the net utility maximization
problem for the downlink that we discuss in Section 3.3, are
of this form.

An interesting observation is that the optimal γ∗
i , in the

case γ∗
i > 0, that satisfies (11) also maximizes the number

of bits successfully received per unit of energy [4]:

max
γi>0

riPs(γi)

pi

,

since substituting (2) in the last equation gives

max
γi>0

W

Ii + η

Ps(γi)

γi

,

which is maximized for γ∗
i satisfying (11). This last obser-

vation indicates that the optimal γ∗
i that maximizes the net

utility in (10), also maximizes the number of bits success-
fully received per unit of energy. Moreover, under the as-
sumptions of Proposition 1, this result is independent of the
user’s utility and the congestion price, and can be achieved
in a decentralized manner via pricing. Finally, we note that
(11) also holds when the objective is to maximize the total
throughput [13].

The next proposition is related to the existence of a γ∗
i >

0. For simplicity we drop the subscript i, since the opti-
mal target bit-energy-to-noise-density ratio will be the same
for mobiles with the same dependence of the packet success
probability on γ.

Proposition 2. Assume that Ps(γ) is continuously dif-
ferentiable, and is strictly convex for γ < γ0 and strictly
concave for γ > γ1. Also assume that Ps(0) = 0. Then
there exists γ∗ > 0 that satisfies (11). Moreover, if γ0 = γ1,
then γ∗ is unique.

In practise, we can have Ps(0) > 0, i.e., the packet success
probability does not tend to zero as γ tends to zero; γ = 0,
hence p = 0, corresponds to the case where the receiver is
guessing what the bits transmitted by the sender are [4].
However, as we see next, Ps(0) will typically be very small,
and γ∗ satisfying (11) will exist.

In the case of additive white Gaussian noise and a non-
fading channel, the bit error rate for DPSK (Differential
Phase Shift Keying) modulation is [15]

BER(γ) = 0.5e−γ .

From the last equation, observe that BER(0) > 0. If there
is no error correction, and bit errors are independent and
are all detected, then the packet success probability Ps(γ)
is given by

Ps(γ) = (1 − BER(γ))L , (14)

where L is the number of bits in one packet. For L = 60
bits, the last equation gives Ps(0) = 8.710−19.

When up to k bit errors are correctable, the packet success
probability can be approximated by

Ps(γ) =
k
∑

j=0

(

L

j

)

BER(γ)j(1 − BER(γ))L−j . (15)

Figure 1(a) shows the packet success probability with no er-
ror correction, which is computed from Equation (14). Ob-
serve that Ps(γ) has a sigmoid shape, and a unique γ∗ sat-
isfying (11) exists. Indeed, γ∗ corresponds to the tangent
of the line passing through the origin with the curve Ps(γ).
Figure 1(b) shows that in the presence of forward error cor-
rection (FEC), in which case the packet success probability
is computed from Equation (15), a unique γ∗ again exists;
moreover, γ∗ in the presence of FEC is smaller than when
there is no FEC; γ∗ is also smaller in the case of BPSK and
QPSK modulation, in which case the bit error rate is [15]

BER(γ) = 0.5erfc(
√

γ) ,

where erfc is the complementary error function.
The optimality of γ∗ is stated in the following two propo-

sitions. The proof for the latter uses Propositions 1, 3, and
Theorem 1 in [8].

Proposition 3. Let γ∗
i be the unique value satisfying (11),

and assume P ′′
s (γ∗

i ) < 0. If the utility Ui(xi) in (10) is dif-
ferentiable and strictly concave and U ′

i(xi) > 0, ∀xi > 0,
where xi = riPs(γi), then there exists a r∗

i , that along with
γ∗

i achieves the maximum in (10).

Proposition 4. Under the conditions stated in Proposi-
tions 1 and 3, and if Ui(xi) is increasing and strictly concave
in xi = riPs(γi), then there exists a price λ such that the al-
locations {(ri, γi)} formed from the unique solutions (ri, γi)
to (10) maximize the network revenue

maximize
∑

i

λriγi

over ri ≥ 0, γi ≥ 0

subject to
∑

i

riγi < W ,
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Figure 1: Packet success rate for DPSK modulation

with 60 bits long packets, with and without error cor-

rection, and for BPSK/QPSK modulation. The optimal

γ∗(≈ 5) satisfies (11), and is the value of γ at which the

line passing through the origin is tangent to Ps(γ).

and the social welfare

maximize
∑

i

Ui(riPs(γi))

over ri ≥ 0, γi ≥ 0

subject to
∑

i

riγi < W .

Due to Propositions 1 and 3, the user optimization prob-
lem in (10) can be reduced to

maximize Ui(riPs(γ
∗)) − λriγ

∗ (16)

over ri ≥ 0 ,

with γ∗ satisfying (11). In the case of a strictly concave
utility, the optimal r∗i is given by

r∗i =
1

Ps(γ∗)
U ′

i
−1
(

λγ∗

Ps(γ∗)

)

. (17)

Assume now that the utility is not a strictly concave function
of the rate, but has a sigmoid shape and is bounded by the
line ξr, which is tangent to the utility Ui(riPs(γ

∗)) at rate
r0

i , after which the utility is strictly concave. In this case,
the optimal rate r∗i is given by (17) if and only if r∗

i ≥ r0
i . If

this inequality does not hold, then the optimal rate is zero.
In this case, γ∗ can take any value, since both the utility

and the charge is zero (Equation (11) need not hold in this
case).

3.2 Extensions
In this section we consider extensions to the basic model

corresponding to (10). For all extensions, Propositions 1-3
hold, hence the corresponding user optimization problems
can be reduced to a form similar to (16) and (11).

3.2.1 Small number of mobile hosts
If the number of mobile hosts is not large, then the re-

source constraint is given by (5) rather than its approxima-
tion (6), and the user optimization problem becomes

maximize Ui(riPs(γi)) − λαUL

i

over ri ≥ 0, γi ≥ 0 ,

with αUL

i given by (4).

3.2.2 Including the cost of battery power
The cost of battery power can be included by adding an

appropriate term to (10). For example, if the battery cost
is linear to the power, we have

maximize Ui(riPs(γi)) − λriγi − νipi

over ri ≥ 0, γi ≥ 0 ,

where pi is the transmitted power and νi is the cost per unit
of battery power, which can be different for different users.

3.2.3 Integration with transport layer congestion con-
trol

The congestion cost associated with the fixed network can
be taken into account by modifying (10) to

maximize Ui(riPs(γi)) − λriγ − µriPs(γi) (18)

over ri ≥ 0, γi ≥ 0 ,

where µ is the congestion price for resources in the fixed
network. Observe that the congestion charge for the fixed
network is proportional to the rate of successful data trans-
fer over the wireless network, i.e., riPs(γi). Equation (18)
can be the basis for integrated rate control over wireless and
wired resources. We will discuss in Section 4.1 one possible
approach for using the same signalling mechanism for con-
veying congestion information in both networks.

3.2.4 Bound on the total interference produced by
elastic traffic

The network might wish to limit the total interference that
elastic traffic causes to other types of traffic, such as real-
time traffic, to be pmax. In this case, the target function in
the user problem (10) remains the same, but the constraint
(6) changes to

∑

j

gjpj ≤ pmax .

3.3 Congestion Pricing for the Downlink
The capacity constraint in the downlink is in terms of the

maximum power p̄ that the base station can transmit (8):

∑

i

pi ≤ p̄ .



Hence, it is appropriate for the network to charge user i in
proportion to his power pi. In this case, the user optimiza-
tion problem becomes

maximize Ui (ri(Ps(γi))) − λpi (19)

over ri ≥ 0, γi ≥ 0 ,

where λ is the price per unit of power, and the variables
ri, γi, and pi are related through (7).

Propositions 1 - 3 also hold for the downlink. On the
other hand, note that Proposition 4 does not hold. Due to
Propositions 1 and 3 the user optimization problem in (19),
combined with (7), can be reduced to

maximize Ui(riPs(γ
∗)) − λ

riγ
∗(Ii + ηi)

Wgi

(20)

over ri ≥ 0 ,

with γ∗ satisfying (11), and Ii = θigi

∑

j 6=i
pj . In the case

of a strictly concave utility, the optimal r∗
i is given by

r∗i =
1

Ps(γ∗)
U ′

i
−1
(

λγ∗(Ii + ηi)

WgiPs(γ∗)

)

. (21)

In the above model, unlike the case for the uplink, mobile
users that are far from the base station incur a higher charge,
for the same rate and target bit-energy-to-noise-density ra-
tio. As a result, for the same utility, users far from the base
station will send at a lower transmission rate, compared to
users close to the base station; related investigations are
presented in Section 5. In the downlink, the dependence of
charges on a mobile’s distance results in more efficient uti-
lization of the base station’s power, since it leads to higher
aggregate utility.

4. APPLICATION OF THE FRAMEWORK
In this section we discuss the application of the frame-

work presented in the previous section, highlighting some
important practical considerations. In particular, we discuss
two alternatives for applying the proposed framework: The
first involves direct communication of prices from the base
station/radio network controller (BS/RNC) to the mobile
hosts (MHs), which respond by selecting the transmission
rate that maximizes their net utility. The second involves
communication of willingness-to-pay or weight values from
the mobile users to the RNC, which allocates rates accord-
ing to these values. The above two alternatives are similar
to the two decompositions of the model for rate control of
elastic traffic in fixed networks that is investigated in [8].

4.1 Procedure with explicit communication of
prices

4.1.1 Uplink
We first describe the procedure for applying the conges-

tion pricing model for the uplink, presented in Section 3.1,
when there is direct communication of prices from the base
station/radio network controller (BS/RNC) to the mobile
hosts (MHs), Figure 2(a). The procedure involves the fol-
lowing steps:

1. For each MH i, the RNC selects the optimal γ∗
i based

on (11).

2. The RNC announces the price per unit of wireless re-
source λ.

BS

RNC

feedback (charge)

PSfrag replacements ri

wi

ri = 1
γ∗

i

wi
∑

j wj
W

(a) direct price feedback

BS

RNC
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Figure 2: With direct price communication (left fig-

ure), a mobile responds to price feedback by ad-

justing its transmission rate. On the other hand,

with the willingness-to-pay approach (right figure),

the willingness-to-pay can be adjusted over longer

timescales. The first approach results in more efficient

behavior, but requires more complex functionality in the

mobile compared to the second approach.

3. Each MH i selects its rate r∗
i based on (16).

4. The RNC charges MH i by λr∗
i γ∗

i .

5. The RNC adjusts price λ based on the load, and goes
to Step 2.

In WCDMA, the procedure for selecting γ (target Eb/N0)
is performed at the RNC, during outer loop power control:
The BS measures the bit error rate BER (or the frame error
rate FER), and sends the measurement to the RNC, which
adjusts γ to achieve a particular BER; γ is then used as
the target for fast closed-loop power control, which operates
between the base station and the mobiles. Hence, it is appro-
priate to perform the selection of the optimal γ∗

i in Step 1 at
the RNC, effectively replacing the normal outer loop power
control procedure. Moreover, γ∗

i will change whenever the
dependence of the packet success probability on γ changes,
e.g., when the multipath characteristics change.

Assuming all mobiles have the same packet success rate,
they will have the same optimal γ∗ that satisfies (11). Given
the sigmoid shape3 of Ps(γ) in Figure 1, γ∗ can be found
by gradually increasing γ while the derivative P ′

s(γ) is larger
than Ps(γ)/γ, and decreasing it when the derivative is smaller.
The above procedure is similar to the typical procedure used
for outer loop power control today [6, p. 196-200], hence the
latter would require small modifications in order to select
the target bit-energy-to-noise-density ratio based on (11).
On the other hand, if the packet success rate is different for
different mobiles, then the optimal γ∗

i would be different for
different mobiles; note that in all cases γ∗

i would satisfy (11).
As noted above, γ∗ is the target for fast closed-loop power

control between the base station and the mobile hosts; this
power control loop operates on a much faster timescale com-
pared to the timescale over which the transmission rate is
adjusted. Indeed, in WCDMA fast closed-loop power con-
trol operates at a frequency of 1500 Hz, resulting in one

3The fact that Ps(0) > 0 will not be a problem in practise
since, as our numerical results show, Ps(0) will typically be
very small.



power update approximately every 0.67 milliseconds. On the
other hand, the rate remains constant within a single frame,
whose minimum duration is 10 milliseconds. Hence, the rate
control procedure in Step 3 works on slower timescales com-
pared to the timescales of fast closed-loop power control.
Moreover, observe from Equation (2) that a change in the
transmission rate would require adjusting the transmission
power in order to maintain the same γ∗.

In Step 4, charges are proportional to the product r∗
i γ∗

i .
The BS/RNC, assuming perfect error detection, can esti-
mate the transmission rate r∗

i from the received rate. Also,
the BS/RNC knows γ∗

i . Hence, there is no parameter that
the mobile user can falsely declare in order to reduce his
charge, without reducing his level of service.

Step 5 involves adjusting the price λ based on some esti-
mate of the level of congestion of wireless network resources.
The specific procedure for adjusting the price is related to
how prices are communicated to the mobile users. One al-
ternative is to have the RNC directly announce prices; this
requires a new control channel from the RNC to the MHs.
The price function is of the form λ(ρ) : [0, 1] → [0,∞]. The
function that we consider in our numerical investigations is

λ(ρ) =
φ

1 − ρ
, (22)

where φ can be adjusted to achieve a target utilization, if
a rough estimate of the demand (number of users and their
utilities) is known.

Another option is to consider the same signalling chan-
nel to convey congestion information for both wireless and
wired network resources; the corresponding model is given
by (18). An interesting approach is to have the congestion
signals for both types of networks communicated using Ex-
plicit Congestion Notification (ECN) [14], which has been
approved as an IETF proposed standard. The possible use
of ECN marking in wireless networks has been proposed by
other researchers, e.g., see [11], but with the objective of
improving the performance of TCP over wireless links.

ECN marking for conveying congestion information re-
lated to the wireless network can be performed at the RNC,
whereas in the wired network routers are responsible for
packet marking. Indeed, the RNC would be responsible for
packet marking in both the uplink and the downlink, based
on the level of congestion in each direction. Such a selec-
tion is appropriate, since the RNC is responsible for man-
aging radio resources, and performs admission control and
transmission scheduling. One challenging issue is that in
the uplink there is no shared buffer, hence queue-dependent
marking schemes, such as Random Early Detection (RED),
cannot be applied. Instead, marking can depend solely on
the average load of the wireless channel.

Both the above two alternatives require estimation of the
load ρ. One approach for measuring the load involves di-
rect application of

∑

i
αUL

i , with αUL

i given by (4). A more
efficient method is to use aggregate measurements of the
total interference Itotal (which includes the noise), and the
noise η, from which the total load can be estimated from
the following equation, which can be derived by summing
(3) for all mobiles (this sum is called uplink load factor, [6,
p. 160-162]):

∑

j

αUL

j =
Itotal − η

Itotal

. (23)

Advantages of using the last equation are that only aggre-
gate power measurements are required and the interference
of neighboring cells is implicitly handled.

4.1.2 Downlink
The procedure for applying the congestion pricing model

for the downlink, presented in Section 3.3, involves similar
steps as those in the uplink, with the modifications that we
describe next.

The selection of the optimal bit-energy-to-noise-density
ratio γ∗

i , as in the uplink, is based on (11), but is performed
at the mobile hosts. The selection of the rate r∗

i in Step 3
is based on (20). Note that the path gain and interference
in this equation can change on a fast timescale. Since, as
discussed in the previous subsection, our rate control proce-
dure operates on slower timescales, the values of Ii and gi

that appear in (20) can be taken to be averages. Moreover,
the interference and the noise can be directly measured at
the mobile host, whereas the path gain can be estimated
using the received power of the downlink pilot channel [6].

The charge in Step 4 is proportional to the average trans-
mission power p̃i. Finally, the price adjustment in Step 5
can follow a similar function as (22), with the difference
that now the load is given by

∑

i
p̃i

p̄
,

since the resource constraint in the downlink, Equation (8),
is in terms of the total transmission power at the base sta-
tion.

4.2 Allocation of rates by RNC according to
willingness-to-pay

An alternative to the approach discussed in the previous
subsection, that involves communication of prices from the
base station to the mobile hosts and rate adaptation by the
mobile hosts, is to add more intelligence to the RNC, to
allocate rates according to the users’ declared willingness-
to-pay or weight values, Figure 2(b). Indeed, this approach
is similar to the class-based quality of service framework
presented in [5].

The above approach is attractive for the following rea-
sons: i) WCDMA supports negotiation of bearer service
properties both at call setup, and during a call [6, p. 10];
ii) the RNC already has intelligence for supporting flexi-
ble packet scheduling and load control; iii) cellular radio
networks are single hop networks4, hence the approach we
describe satisfies desirable fairness properties, namely pro-
portional fairness [8]; and iv) the approach is less demand-
ing for mobile hosts, which do not need to adjust their rate
in the (relatively fast) timescale over which the congestion
price changes, but rather adjust their willingness-to-pay on
a slower timescale. Due to all the above, rate allocation ac-
cording to willingness-to-pay values require fewer modifica-
tions to existing procedures in WCDMA systems, compared
to the explicit price communication approach described in
the previous subsection, hence is easier to implement. On
the other hand, the explicit price communication approach
places more intelligence and control at the mobile user, and

4Achieving similar fairness objectives in a multiple hop net-
work, with rate allocation done by the routers, is more com-
plicated.



can support the integration of congestion control in wire-
less and wired networks; support of such integration with a
willingness-to-pay like scheme is not straightforward.

4.2.1 Uplink
The scheme for the uplink works as follows: Mobile users

communicate their willingness-to-pay to the RNC, which
then allocates rates in proportion to the declared willingness-
to-pay values. In particular, the rate for user i is given by

ri =
1

γ∗
i

wi
∑

j
wj

W , (24)

where wi is the willingness-to-pay for user i and γ∗
i satisfies

(11). Observe from the last equation that a user’s rate is in-
versely proportional to his target bit-energy-to-noise-density
ratio γ∗

i . Also note that in this approach the rate ri needs
to be signaled from the RNC to the mobile i.

The approach for rate allocation based on willingness-to-
pay values corresponds to the case where users have a loga-
rithmic utility Ui(riPs(γi)) = wi log(riPs(γi)). Substituting
this utility in Equation (10), and taking the derivative with
respect to ri, we find that a user’s net utility is maximized
for wi = λriγ

∗
i , where as before γ∗

i satisfies (11); hence wi

represents a price per unit of time, which justifies the term
‘willingness-to-pay’. From the above we see that user i’s re-
source usage riγi is proportional to his willingness-to-pay,
which leads to the proportional allocation of resources in
Equation (24).

For a general form of the utility function, and if updates of
the willingness-to-pay can occur in intervals of fixed duration
τ , then the user can vary his willingness-to-pay according to
wi(t) = λ̂(t)γ∗

i r∗i (t), where r∗i (t) and γ∗
i are given by (17)

and (11) respectively, and λ̂(t) is an estimate of the price;

e.g., λ̂(t) = wi(t−τ)
ri(t−τ)γ∗

i

, where ri(t − τ) is the rate allocated

to user i at time t − τ .

4.2.2 Downlink
In the downlink, similar to the uplink, users declare their

willingness-to-pay to the RNC. Based on these declarations,
the average power allocated to mobile i is

p̃i =
wi

∑

j
wj

p̄ .

From p̃i, and using (7), the RNC allocates to mobile i the
rate

ri =
W

γ∗
i

gi

Ii + ηi

wi
∑

j
wj

p̄ ,

where similar to the uplink, γ∗
i is determined from (11).

Hence, the above approach requires the RNC to have knowl-
edge of the average path gain, the average interference, the
noise, and the target bit-energy-to-noise-density ratio. Al-
though WCDMA supports the reporting of such parameters
to the RNC [6], care must be taken to ensure truthful dec-
laration from the mobile hosts; for example, truthful decla-
ration can be ensured if the software running in the mobile
hosts, which is responsible for reporting the above parame-
ters, cannot be modified by users.

5. NUMERICAL INVESTIGATIONS
In this section we present numerical investigations that

demonstrate the application of our framework and how vari-
ables such as the rate, the signal quality, and the charge in

Table 1: Parameters for the numerical investigations. d

is distance in Km.

parameter value
total BS power, p̄ 16.7 Watt

load 60%
noise, η 10−13 Watt

path gain, g(d) kd−u, u = 3.52,
k = 1.82 · 10−14

downlink orthogonality, θ 0.1
BER(γ) (DPSK) 0.5e−γ

bits per pkt, L 60
γ∗, from (11) & Fig. 1(a) 5

utility, concave 1 − e−bx, b = 0.4

utility, sigmoid 1 − e−b(x−x0), x ≥ 5.6Ps(γ
∗)

1 − e−bx, x < 5.6Ps(γ
∗)

b = 0.4, x0 = 2

the steady state depend on a mobile’s distance and the wire-
less network’s load; moreover, we identify and explain the
differences between the uplink and the downlink resource
control models.

The rate for the uplink is computed from (10) and for the
downlink from (19). In both cases, γ∗ is determined from
(11). We consider two types of utility curves: concave and
sigmoid. The parameters for the particular functions, along
with the propagation model and other system parameters
are shown in Table 1.

Figure 3(a) shows that in the uplink, the rate is indepen-
dent of a mobile’s distance from the base station. This is
expected, since congestion charges are also independent of
the distance, and depend only on the transmission rate and
the target bit-energy-to-noise-density ratio. On the other
hand, in the downlink, the optimal rate that maximizes a
user’s net utility decreases with the distance. This is due
to the dependence of charges on the transmitted power from
the base station, which results in the rate depending on the
path gain, as evident from Equation (21).

Figure 3(b) is for the case where users have a sigmoid
utility. The results for the uplink remain the same. On
the other hand, the results for the downlink are different.
In particular, there is a distance where the optimal rate
drops abruptly to zero; this is the distance after which the
net utility becomes negative for any positive rate, hence the
user benefits most by not sending data.

Figure 4(a) shows the corresponding power requirements
for the uplink and the downlink, in the case of a concave util-
ity. In the uplink, charges are independent of the mobile’s
position and its transmission power, hence the power con-
tinuously increases with the distance in order to maintain a
constant signal quality. In the downlink, the power initially
increases with the distance, since doing so increases the net
utility; at some distance, the power decreases with the dis-
tance, since the path loss increases fast with the distance,
hence the necessary power and the corresponding charge,
which is proportional to the power, increase fast.

Figure 4(b) shows the results for a sigmoid utility. There
is a difference only for the downlink, where the power drops
to zero after some distance, when the net utility is negative
for any positive rate, hence the net utility is maximized, and
equals zero, for zero rate and power.
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Figure 3: In the uplink, the optimal rate is independent

of the distance, and in the downlink it decreases with the

distance. For a sigmoid utility, in the downlink the rate

drops to zero after some distance, when the net utility

is negative for any positive rate.

Figures 5(a) and 5(b) show the dependence of the charge
on the distance. As expected, for the uplink the charge is
independent of the distance. On the other hand, for the
downlink, the dependence of the charge on the distance is
similar to the dependence of the power on the distance, since
in the downlink the charge is proportional to the power.

The dependence of the rate and the power on the load,
for a concave utility, and for the uplink and downlink are
shown in Figures 6(a) and 6(b). For the uplink, the load
is taken to be

∑

j
αUL

j ≈∑
j
rjγj/W , and for the downlink

∑

j
p̃j/p̄. Figure 6(a) shows that the rate decreases faster

with the load in the downlink. The reason for this behavior
is that the rate in the downlink, as (21) shows, depends on
the load both through the congestion price and through the
interference.

Figure 6(b) shows that in the uplink the power increases
with the load. On the other hand, in the downlink the power
initially increases and then decreases. This difference is due
to the following: The power depends on both the rate and
the interference, Equation (1). The dependence of the rate
on the load is shown in Figure 6(a). In the uplink the inter-
ference increases fast with the load, since from (23) we have
Ii +η ≈ Itotal = η/(1−ρ). On the other hand, in the down-
link the interference has an almost linear dependence on the
load, since Ii+ηi = θigi

∑

j 6=i
pj +ηi ≈ θigiρp̄+ηi. Both the

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

uplink
downlink

PSfrag replacements

p
o
w

e
r

(W
a
tt

s)

d (Km)

(a) Concave utility

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

uplink
downlink

PSfrag replacements

p
o
w

e
r

(W
a
tt

s)
d (Km)

(b) Sigmoid utility

Figure 4: In the uplink, the power increases with the

distance, to maintain a constant signal quality. In the

downlink, the power initially increases, and then de-

creases. For a sigmoid utility, in the downlink the rate

drops to zero after some distance, when the net utility

is negative for any positive rate.

above two approximations are for the case of a large number
of mobile users, each contributing a small percentage to the
total interference.

6. RELATED WORK
Next we present a brief overview of related work; this

is not an exhaustive survey of the area, and has the goal to
identify the main differences between other research and the
work presented in this paper.

The authors of [4] consider a utility that is different from
the utility that we consider, and is interpreted as the num-
ber of information bits transmitted per unit of energy. It
is shown that the non-cooperative game, where mobiles ad-
just their power to maximize their utility, has a unique Nash
equilibrium, which however is inefficient. With the introduc-
tion of prices [17], Pareto improvements are achieved, but
not the social welfare optimal. On the other hand, the re-
source control model we have presented for the uplink, under
some assumptions regarding the utility functions, achieves
the social welfare maximum.

The authors of [20] consider a utility that is a function of
the transmission rate, and investigate the problem of maxi-
mizing the sum of all utilities in the forward link (downlink),
under constraints on the total transmission power at the
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Figure 5: In the uplink, the charge is independent of

the distance. In the downlink, the charge follows a shape

similar to the power, Figure 4, since it is proportional to

the power.

base station, and constraints on the maximum error rate for
each user. The allocation of rates is done centrally at the
base station. The approach proposed in Section 3.3, and
given by (19), considers a similar objective, but with the
utility being a function of the actual throughput (transmis-
sion rate multiplied by the success probability), rather than
the transmitted rate. Moreover, our approach uses a decen-
tralized scheme, based on prices, to achieve the objective.

The authors of [21] consider a utility that is a function of
the bit-energy-to-noise-density ratio, which can have a sig-
moid shape, and formulate a utility-based distributed power
control algorithm where each user seeks the maximize his
net utility, and charges are proportional to the power. For a
constant price per unit of power, it is proved that the power
update algorithm converges. The authors of [10] consider
downlink resource allocation in CDMA networks based on
pricing. The user utility is a step function of the bit-energy-
to-noise-density ratio, and a mobile’s charge contains a con-
stant term (price per code) and a term linear in the transmit-
ted power from the base station. The authors of [7] consider
a utility that is a monotonically increasing concave function
of the bit-energy-to-noise-density ratio and a monotonically
decreasing concave function of the mobile’s power.

Our work differs from the above in that it considers the
joint optimization of the signal quality and transmission
rate, and takes into account the particular resource con-
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Figure 6: The rate depends on the load more for the

downlink than for the uplink. The power in the down-

link initially increases, and then decreases. The mobile

distance from the base station is d = 0.5 Km.

straints in both the downlink and uplink, identifying the
differences of the two corresponding models; also, our frame-
work takes into account the congestion for both wireless and
wired network resources, in addition to the cost of mobile
battery power. Moreover, the above approaches are geared
towards mechanisms for power control; on the other hand,
our work deals with control mechanisms that operate on a
slower timescale, hence on top of fast closed-loop power con-
trol. Finally, in the model we have proposed for the uplink,
there is no differentiation of mobile users based on their po-
sition. On the other hand, in the approaches of [4, 17, 21],
mobile users far from the base station that encounter high
path loss are charged more and receive less resources, com-
pared to users close to the base station; this is termed ‘near-
far unfairness’ in [21]. Investigation of the above schemes,
and comparison with a resource control scheme based on
microeconomics, similar to the one presented in this paper,
but for traffic with fixed-rate requirements, appears in [19].

The concept of utility in wireless local area networks is
considered in [1, 12]. In particular, the work of [1] uses
utility curves for modelling application requirements, and
based on this, for building adaptive QoS support in the MAC
layer. The work of [12] uses the utility concept for defining
fair contention resolution algorithms, taking into account
unique characteristics of ad hoc wireless networks, such as
location-dependent contention and decentralized control.



7. CONCLUDING REMARKS
We have presented a framework, based on microeconomics

and congestion pricing, for resource control in CDMA, and
Wideband CDMA in particular, networks carrying elastic
traffic. An important property of the framework is that
it incorporates the congestion for shared resources in both
wireless and wired networks, as well as the cost of power con-
sumption. Hence, it can be used as the basis for integration
of control mechanisms in wireless and wired networks.

We have identified a number of practical issues regarding
the application of the framework, and have presented a series
of numerical investigations identifying its key features, and
how various parameters such as a mobile’s position and the
wireless network’s load, influence resource sharing.

Regarding the application of the proposed framework, dif-
ferent aspects of the framework have a different complexity.
For example, currently the selection of the frame error rate
for non-real-time services is fixed, equal to some (arbitrary)
value in the range 10-20% [6, p. 198]. Typical outer loop
power control procedures increase or decrease the target bit-
energy-to-noise-density ratio in order to achieve this fixed
frame error rate. On the other hand, we have seen that
in order to achieve efficiency, the optimal target bit-energy-
to-noise-density ratio should depend on the packet success
probability as a function of the bit-energy-to-noise-density
ratio, and in particular for best-effort traffic should satisfy
(11). Moreover, as discussed in Section 4.1, the procedure
for selecting the optimal bit-energy-to-noise-density ratio
can take advantage of the sigmoid shape of the packet suc-
cess probability, hence can be implemented with small mod-
ifications to the typical procedures used for outer loop power
control. Also, the allocation of rates by the radio network
controller (RNC) according to the willingness-to-pay values
declared by all mobile users can be implemented as part of
the load control functionality of the RNC, in a class-based
framework where a different class corresponds to a different
willingness-to-pay value. Based on the above discussion, the
willingness-to-pay approach appears to require fewer modifi-
cations to existing procedures compared to the explicit price
communication approach, since the latter places more intel-
ligence in the mobile hosts; on the other hand, the explicit
price communication approach places more control, hence
flexibility, in the mobile hosts, and can be the basis for sup-
porting the integration of congestion control in wireless and
wired networks.

Issues we are currently investigating include the extension
of the proposed framework for bursty traffic, for which a
hybrid code and time division multiplexing scheme might
be more appropriate [6], and for loss sensitive traffic, whose
utility depends on the packet loss rate in addition to the
average throughput. Another issue of practical nature is
the fact that we have assumed that rates obtain continuous
values, whereas rates in WCDMA can obtain discrete values,
with the use of discrete spreading factors.

In this paper we introduced the idea of using ECN as
the common signalling mechanism for conveying congestion
information in wireless and wired networks, in order to sup-
port seamless congestion control over both network tech-
nologies. An area for further investigation is the necessary
mechanisms to support the above. In particular, an impor-
tant issue is that there is no shared buffer in the uplink
direction, hence queue-based marking schemes such as Ran-
dom Early Detection (RED) cannot be applied. Finally, we

are investigating the application of microeconomic models
for wireless network dimensioning, and for resource control
in wireless LANs based on IEEE 802.11.

The overall goal of the above work is to further the re-
search on the application of microeconomic models for devel-
oping efficient, flexible, and robust mechanisms for resource
control in wireless networks; this includes both modelling
work that takes into account the particular characteristics
of wireless networks, and more practical engineering investi-
gations on how to modify and enhance existing mechanisms
in order to implement these models.

8. ACKNOWLEDGMENTS
The author would like to thank Bob Briscoe and Dave

Songhurst of BT Research, and Costas Courcoubetis of the
Athens University of Economics and Business, for stimulat-
ing and insightful discussions, and the anonymous reviewers
for providing helpful comments.

9. REFERENCES
[1] G. Bianchi and A. T. Cambell. A programmable MAC

framework for utility-based adaptive quality of service
support. IEEE J. Select. Areas Commun.,
18(2):244–256, February 2000.

[2] R. J. Gibbens and F. P. Kelly. Resource pricing and
congestion control. Automatica, 35:1969–1985, 1999.

[3] K. S. Gilhousen et al. On the capacity of a cellular
CDMA system. IEEE Trans. on Vehicular Technology,
40(2):303–312, May 1991.

[4] D. J. Goodman and N. B. Mandayam. Power control
for wireless data. IEEE Personal Commun., 7:48–54,
April 2000.

[5] Y. Guo and H. Chaskar. Class-based quality of service
over air interfaces in 4G mobile networks. IEEE
Commun. Mag., pages 132–137, March 2002.

[6] H. Holma and A. Toskala. WCDMA for UMTS.
Wiley, New York, 2000.

[7] H. Ji and C.-Y. Huang. Non-cooperative uplink power
control in cellular radio systems. ACM/Baltzer
Wireless Networks Journal, 4:233–240, 1998.

[8] F. P. Kelly. Charging and rate control for elastic
traffic. European Transactions on Telecommunications,
8:33–37, January 1997.

[9] P. B. Key and D. R. McAuley. Differential QoS and
pricing in networks: Where flow control meets game
theory. IEE Proceedings Software, 146(2):39–43,
March 1999.

[10] P. Liu, M. L. Honig, and S. A. Jordan. Forward-link
CDMA resource allocation based on pricing. In Proc.
of IEEE Wireless Communications and Networking
Conference (WCNC), September 2000.

[11] G. Montenegro, S. Dawkins, M. Kojo, V. Magret, and
N. Vaidya. Long thin networks. RFC 2757, January
2000.

[12] T. Nandagopal, T.-E. Kim, X. Gao, and
V. Bharghavan. Achieving MAC layer fairness in
wireless packet networks. In Proc. of ACM
International Conference on Mobile Computing and
Networking (MOBICOM), August 2000.

[13] S.-J. Oh and K. M. Wasserman. Dynamic spreading
gain in multiservice CDMA networks. IEEE J. Select.



Areas Commun., 17(5):918–927, May 1999.

[14] K. K. Ramakrishnan, S. Floyd, and D. Black. The
Addition of Explicit Congestion Notification (ECN) to
IP. RFC 3168, September 2001.

[15] J. M. Rulnick and N. Bambos. Mobile power
management for wireless communications networks.
ACM/Baltzer Wireless Networks Journal, 3:3–14,
1997.

[16] A. Sampath, P. S. Kumar, and J. M. Holtzman. Power
control and resource management for a multimedia
CDMA wireless system. In Proc. of IEEE Int’l
Symposium on Personal, Indoor and Mobile Radio
Commun. (PIMRC), September 1995.

[17] C. U. Saraydar, N. B. Mandayam, and D. J.
Goodman. Efficient power control via pricing in
wireless data networks. IEEE Trans. Commun.,
50(2):291–303, February 2002.

[18] V. A. Siris. Congestion pricing for resource control in
Wideband CDMA. Technical Report No. 299,
ICS-FORTH, December 2001.

[19] V. A. Siris, B. Briscoe, and D. Songhurst. Economic
model for resource control in wireless networks. In
Proc. of IEEE Int’l Symposium on Personal, Indoor
and Mobile Radio Commun. (PIMRC), September
2002.

[20] L. Song and N. B. Mandayam. Hierarchical SIR and
rate control on the forward link for CDMA data users
under delay and error constraints. IEEE J. Select.
Areas Commun., 19(10):1871–1882, October 2001.

[21] M. Xiao, N. B. Shroff, and E. K. P. Chong.
Utility-based power control in cellular wireless
systems. In Proc. of IEEE INFOCOM’01, April 2001.

[22] L. C. Yun and D. G. Messerschmitt. Power control for
variable QoS on a CDMA channel. In Proc. of IEEE
MILCOM’94, October 1994.


